Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 25: e42483, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37477958

ABSTRACT

BACKGROUND: The COVID-19 pandemic has increased the use of digital solutions in medical care, especially for patients in remote areas and those requiring regular medical care. However, internet access is essential for the implementation of digital health care. The digital divide is the unequal distribution of access to digital technology, and the first level digital divide encompasses structural barriers. Brazil, a country with economic inequality and uneven population distribution, faces challenges in achieving internet access for all. OBJECTIVE: This study aims to provide a comprehensive overview of the first-level digital divide in Brazil, estimate the relationship between variables, and identify the challenges and opportunities for digital health care implementation. METHODS: Data were retrieved from the Brazilian Institute of Geography and Statistics National Continuous House survey database, including demographic, health, and internet-related variables. Statistical analysis included 2-tailed t tests, chi-square, and multivariate logistic regression to assess associations between variables. RESULTS: Our analysis included 279,382 interviews throughout Brazil. The sample included more houses from the northeast (n=99,553) and fewer houses from the central west (n=30,804). A total of 223,386 (80.13%) of the interviewed population used the internet, with urban areas having higher internet access (187,671/212,109, 88.48%) than rural areas (35,715/67,077, 53.24%). Among the internet users, those interviewed who lived in urban houses, were women, were younger, and had higher income had a statistically higher prevalence (P<.001). Cell phones were the most common device used to access the internet (141,874/143,836, 98.63%). Reasons for not using the internet included lack of interest, knowledge, availability, and cost, with regional variations. The prevalence of internet access also varied among races, with 84,747 of 98,968 (85.63%) White respondents having access, compared to 22,234 of 28,272 (78.64%) Black respondents, 113,518 of 148,191 (76.6%) multiracial respondents, and 2887 of 3755 (76.88%) other respondents. In the southeast, central west, and south regions, the numbers of people with internet access were 49,790 of 56,298 (88.44%), 27,209 of 30,782 (88.39%), and 27,035 of 31,226 (86.58%), respectively, and in the north and northeast, 45,038 of 61,404 (73.35%) and 74,314 of 99,476 (74.7%). The income of internet users was twice the income of internet nonusers. Among those with diabetes-related limitations in daily activities, 945 of 2377 (39.75%) did not have internet access, and among those with daily activity restrictions, 1381 of 3644 (37.89%) did not have access. In a multivariate logistic regression analysis, women (odds ratio [OR] 1.147, 95% CI 0.118-0.156; P<.001), urban households (OR 6.743, 95% CI 1.888-1.929; P<.001), and those earning more than the minimum wage (OR 2.087, 95% CI 0.716-0.756; P<.01) had a positive association with internet access. CONCLUSIONS: Brazil's diverse regions have different demographic distributions, house characteristics, and internet access levels, requiring targeted measures to address the first-level digital divide in rural areas and reduce inequalities in digital health solutions. Older people, poor, and rural populations face the greatest challenges in the first level digital divide in Brazil, highlighting the need to tackle the digital divide in order to promote equitable access to digital health care.


Subject(s)
COVID-19 , Digital Divide , Telemedicine , Humans , Female , Aged , Male , Brazil/epidemiology , Internet Access , Pandemics , COVID-19/epidemiology , Internet
2.
J Med Internet Res ; 21(11): e15406, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31769762

ABSTRACT

BACKGROUND: Informed estimates claim that 80% to 99% of alarms set off in hospital units are false or clinically insignificant, representing a cacophony of sounds that do not present a real danger to patients. These false alarms can lead to an alert overload that causes a health care provider to miss important events that could be harmful or even life-threatening. As health care units become more dependent on monitoring devices for patient care purposes, the alarm fatigue issue has to be addressed as a major concern for the health care team as well as to enhance patient safety. OBJECTIVE: The main goal of this paper was to propose a feasible solution for the alarm fatigue problem by using an automatic reasoning mechanism to decide how to notify members of the health care team. The aim was to reduce the number of notifications sent by determining whether or not to group a set of alarms that occur over a short period of time to deliver them together, without compromising patient safety. METHODS: This paper describes: (1) a model for supporting reasoning algorithms that decide how to notify caregivers to avoid alarm fatigue; (2) an architecture for health systems that support patient monitoring and notification capabilities; and (3) a reasoning algorithm that specifies how to notify caregivers by deciding whether to aggregate a group of alarms to avoid alarm fatigue. RESULTS: Experiments were used to demonstrate that providing a reasoning system can reduce the notifications received by the caregivers by up to 99.3% (582/586) of the total alarms generated. Our experiments were evaluated through the use of a dataset comprising patient monitoring data and vital signs recorded during 32 surgical cases where patients underwent anesthesia at the Royal Adelaide Hospital. We present the results of our algorithm by using graphs we generated using the R language, where we show whether the algorithm decided to deliver an alarm immediately or after a delay. CONCLUSIONS: The experimental results strongly suggest that this reasoning algorithm is a useful strategy for avoiding alarm fatigue. Although we evaluated our algorithm in an experimental environment, we tried to reproduce the context of a clinical environment by using real-world patient data. Our future work is to reproduce the evaluation study based on more realistic clinical conditions by increasing the number of patients, monitoring parameters, and types of alarm.


Subject(s)
Adaptation, Psychological/physiology , Artificial Intelligence/statistics & numerical data , Fatigue/therapy , Monitoring, Physiologic/methods , Algorithms , Clinical Alarms , Humans , Reproducibility of Results
3.
JMIR Med Inform ; 5(1): e9, 2017 Mar 27.
Article in English | MEDLINE | ID: mdl-28347973

ABSTRACT

BACKGROUND: Although there have been significant advances in network, hardware, and software technologies, the health care environment has not taken advantage of these developments to solve many of its inherent problems. Research activities in these 3 areas make it possible to apply advanced technologies to address many of these issues such as real-time monitoring of a large number of patients, particularly where a timely response is critical. OBJECTIVE: The objective of this research was to design and develop innovative technological solutions to offer a more proactive and reliable medical care environment. The short-term and primary goal was to construct IoT4Health, a flexible software framework to generate a range of Internet of things (IoT) applications, containing components such as multi-agent systems that are designed to perform Remote Patient Monitoring (RPM) activities autonomously. An investigation into its full potential to conduct such patient monitoring activities in a more proactive way is an expected future step. METHODS: A framework methodology was selected to evaluate whether the RPM domain had the potential to generate customized applications that could achieve the stated goal of being responsive and flexible within the RPM domain. As a proof of concept of the software framework's flexibility, 3 applications were developed with different implementations for each framework hot spot to demonstrate potential. Agents4Health was selected to illustrate the instantiation process and IoT4Health's operation. To develop more concrete indicators of the responsiveness of the simulated care environment, an experiment was conducted while Agents4Health was operating, to measure the number of delays incurred in monitoring the tasks performed by agents. RESULTS: IoT4Health's construction can be highlighted as our contribution to the development of eHealth solutions. As a software framework, IoT4Health offers extensibility points for the generation of applications. Applications can extend the framework in the following ways: identification, collection, storage, recovery, visualization, monitoring, anomalies detection, resource notification, and dynamic reconfiguration. Based on other outcomes involving observation of the resulting applications, it was noted that its design contributed toward more proactive patient monitoring. Through these experimental systems, anomalies were detected in real time, with agents sending notifications instantly to the health providers. CONCLUSIONS: We conclude that the cost-benefit of the construction of a more generic and complex system instead of a custom-made software system demonstrated the worth of the approach, making it possible to generate applications in this domain in a more timely fashion.

SELECTION OF CITATIONS
SEARCH DETAIL
...