Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 85(9): 1423-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21890175

ABSTRACT

The non-dioxin-like PCBs (NDL-PCBs) found in food and human samples have a complex spectrum of adverse effects, but lack a detailed risk assessment. The toxicity profiles of 21 carefully selected PCBs (19 NDL-PCBs) were identified by in vitro screening in 17 different assays on specific endpoints related to neurotoxicity, endocrine disruption and tumor promotion. To ensure that the test results were not affected by polychlorinated dioxins, dibenzofurans or DL-PCB contaminants, the NDL-PCB congeners were thoroughly purified before testing. Principal component analysis (PCA) was used to derive general toxicity profiles from the in vitro screening data. The toxicity profiles indicated different structure-activity relationships (SAR) and distinct mechanisms of action. The analysis also indicated that the NDL-PCBs could be divided into two groups. The first group included generally smaller, ortho-substituted congeners, comprising PCB 28, 47, 51, 52, 53, 95, 100, 101, 104 and 136, with PCB 95, 101 and 136 as generally being most active. The second group comprising PCB 19, 74, 118, 122, 128, 138, 153, 170, 180 and 190 had lower biological activity in many of the assays, except for three endocrine-related assays. The most abundant congeners, PCB 138, 153, 170, 180 and 190, cluster in the second group, and thereby show similar SAR. Two quantitative structure-activity relationship (QSAR) models could be developed that added information to the SAR and could aid in risk assessments of NDL-PCBs. The QSAR models predicted a number of congeners as active and among these e.g., PCB 18, 25, 45 and 49 have been found in food or human samples.


Subject(s)
Environmental Pollutants/toxicity , Polychlorinated Biphenyls/toxicity , Animals , Benzofurans/chemistry , Cell Line, Tumor , Cell Proliferation , Dibenzofurans, Polychlorinated , Environmental Pollutants/classification , Humans , Polychlorinated Biphenyls/classification , Polychlorinated Dibenzodioxins/analogs & derivatives , Polychlorinated Dibenzodioxins/chemistry , Principal Component Analysis , Protein Binding/drug effects , Quantitative Structure-Activity Relationship , Rats , Risk Assessment
2.
Toxicol Sci ; 118(1): 183-90, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20819908

ABSTRACT

The neurotoxic potential of non-dioxin-like polychlorinated biphenyls (NDL-PCBs) is characterized by disruption of presynaptic processes, including calcium homeostasis and neurotransmitter transport. Recently, using a limited set of congeners, we demonstrated that PCB28 and PCB52 can potentiate postsynaptic GABA(A) receptors. In the present study, effects of 20 NDL-PCBs and 2 dioxin-like PCBs, selected based on their chemical variation and abundance in the environment, on human GABA(A) receptors were investigated. GABA(A) receptors were expressed in Xenopus oocytes, and NDL-PCB effects were determined using the two-electrode voltage-clamp technique. Results demonstrate that lower chlorinated PCB19, PCB28, PCB47, PCB51, PCB52, PCB95, and PCB100 act as a partial agonists (at low receptor occupancy), i.e., potentiating the receptor response during coapplication with GABA (at EC(20)). Importantly, PCB19, PCB47, PCB51, and PCB100 can also act as full agonist, i.e., activate the GABA(A) receptor in the absence of GABA. Potentiation and activation of the GABA(A) receptor is concentration dependent and limited to NDL-PCBs that have 3-5 chlorine atoms, 1-3 ortho-substitutions, an equal number (0-1) of meta-substitutions on both phenyl rings, and do not have an adjacent para- and meta-substitution on the same phenyl ring. Activation and potentiation of the GABA(A) receptor by PCB47, the most potent congener (lowest observed effect concentration of 10nM), is attenuated when coapplied with PCB19, PCB28, PCB153, or PCB180, indicative for competitive binding. Considering the importance of GABA-ergic signaling for brain development, motor coordination, learning, and memory, this mode of action can contribute to the previously observed NDL-PCB-induced neurobehavioral and neurodevelopmental effects and should be included in human risk assessment.


Subject(s)
Chlorine/chemistry , Environmental Pollutants/toxicity , GABA-A Receptor Agonists/toxicity , Polychlorinated Biphenyls/toxicity , Receptors, GABA-A/biosynthesis , gamma-Aminobutyric Acid/metabolism , Animals , Environmental Pollutants/chemistry , Female , GABA-A Receptor Agonists/chemistry , Humans , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Polychlorinated Biphenyls/chemistry , Structure-Activity Relationship , Xenopus laevis/physiology
3.
Environ Sci Technol ; 44(8): 2864-9, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20014829

ABSTRACT

PCBs are still ubiquitous pollutants despite the ban on their industrial and commercial use. To date, risk characterization and assessment of non-dioxin-like PCBs (NDL-PCBs), especially with respect to neurotoxicity, is hampered by a lack of data. Therefore, the effects of six common NDL congeners (PCB28, 52, 101, 138, 153 and 180) on human GABA(A) receptors, expressed in Xenopus oocytes, were investigated using the two-electrode voltage-clamp technique. When coapplied with GABA (at EC(20)), PCB28 and PCB52 concentration-dependently potentiate the GABA(A) receptor-mediated ion current. Though the LOEC for both PCB28 and PCB52 is 0.3 microM, PCB28 is more potent than PCB52 (maximum potentiation at 10 muM amounting to 98.3 +/- 12.5% and 25.5 +/- 1.4%, respectively). Importantly, coapplication of PCB28 (0.3 microM) and PCB52 (10 microM) resulted in an apparently additive potentiation of the GABA(A) response, whereas coapplication of PCB28 (0.3 microM) and PCB153 (10 microM) attenuated the PCB28-induced potentiation. The present results suggest that the potentiation of human GABA(A) receptor function is specific for lower-chlorinated NDL-PCBs and that higher molecular weight PCBs may attenuate this potentiation as a result of competitive binding to human GABA(A) receptors. Nonetheless, this novel mode of action could (partly) underlie the previously recognized NDL-PCB-induced neurobehavioral alterations.


Subject(s)
Chlorine/chemistry , GABA-A Receptor Agonists , Polychlorinated Biphenyls/pharmacology , Animals , Binding, Competitive , Female , Humans , Patch-Clamp Techniques , Polychlorinated Biphenyls/chemistry , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...