Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 155(1): 552-62, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24952279

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Serotherapy against snakebite is often unavailable in some regions over Brazil, where people make use of plants from folk medicine to deal with ophidic accidents. About 10% of Combretum species have some ethnopharmacological use, including treatment of snakebites. MATERIALS AND METHODS: We evaluated the ability of the extract of Combretum leprosum and its component arjunolic acid to reduce some in vivo and in vitro effects of Bothrops jararacussu and Bothrops jararaca venoms. The protocols investigated include phospholipase, proteolytic, collagenase, hyaluronidase, procoagulant, hemorrhagic, edematogenic, myotoxic and lethal activities induced by these venoms in Swiss mice. RESULTS: Oral pre-treatment with arjunolic acid reduced the Bothrops jararacussu lethality in up to 75%, while preincubation prevented the death of all the animals. Hemoconcentration effect of Bothrops jararacussu venom was confirmed two hours after i.p. injection, while preincubation with arjunolic acid preserved the hematocrit levels. Both Combretum leprosum extract and arjunolic acid abolished the myotoxic action of Bothrops jararacussu venom. Preincubation of Bothrops jararacussu venom with the extract or arjunolic acid prevented the increase of plasma creatine kinase activity in mice. The hemorrhagic activity of Bothrops jararaca crude venom was reduced down to about 90% and completely inhibited by preincubation with 10 mg/kg or 100 mg/kg Combretum leprosum extract, respectively, while the preincubation and the pretreatment with 30 mg/kg of arjunolic acid reduced the venom hemorrhagic activity down to about 12% and 58%, respectively. The preincubation of the venom with both extract and 30 mg/kg arjunolic acid significantly reduced the bleeding amount induced by Bothrops jararacussu venom. The extract of Combretum leprosum decreased the edema formation induced by Bothrops jararacussu venom both in preincubation and pretreatment, but not in posttreatment. Similarly, arjunolic acid preincubated with the venom abolished edema formation, while pre- and posttreatment have been partially effective. Some enzymatic activities of Bothrops jararacussu and Bothrops jararaca venoms, i.e. phospholipase A2, collagenase, proteolytic and hyaluronidase activities, were to some extent inhibited by the extract and arjunolic acid in a concentration-dependent manner. CONCLUSIONS: Altogether, our results show that Combretum leprosum extract can inhibit different activities of two important Brazilian snake venoms, giving support for its popular use in folk medicine in the management of venomous snakebites.


Subject(s)
Combretum/chemistry , Crotalid Venoms/antagonists & inhibitors , Plant Extracts/pharmacology , Triterpenes/pharmacology , Animals , Antivenins/administration & dosage , Antivenins/isolation & purification , Antivenins/pharmacology , Bothrops , Brazil , Dose-Response Relationship, Drug , Edema/drug therapy , Edema/etiology , Ethnopharmacology , Hemorrhage/drug therapy , Hemorrhage/etiology , Male , Medicine, Traditional , Mice , Plant Extracts/administration & dosage , Plant Roots , Snake Bites/drug therapy , Snake Bites/physiopathology , Triterpenes/administration & dosage , Triterpenes/isolation & purification
2.
Toxicon ; 67: 55-62, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23474269

ABSTRACT

In this work we evaluated the ability of suramin, a polysulfonated naphthylurea derivative, to antagonize the cytotoxic and enzymatic effects of the crude venom of Apis mellifera. Suramin was efficient to decrease the lethality in a dose-dependent way. The hemoconcentration caused by lethal dose injection of bee venom was abolished by suramin (30 µg/g). The edematogenic activity of the venom (0.3 µg/g) was antagonized by suramin (10 µg/g) in all treatment protocols. The changes in the vascular permeability caused by A. mellifera (1 µg/g) venom were inhibited by suramin (30 µg/g) in the pre- and posttreatment as well as when the venom was preincubated with suramin. In addition, suramin also inhibited cultured endothelial cell lesion, as well as in vitro myotoxicity, evaluated in mouse extensor digitorum longus muscle, which was inhibited by suramin (10 and 25 µM), decreasing the rate of CK release, showing that suramin protected the sarcolemma against damage induced by components of bee venom (2.5 µg/mL). Moreover, suramin inhibited the in vivo myotoxicity induced by i.m. injection of A. mellifera venom in mice (0.5 µg/g). The analysis of the area under the plasma CK vs. time curve showed that preincubation, pre- and posttreatment with suramin (30 µg/g) inhibited bee venom myotoxic activity in mice by about 89%, 45% and 40%, respectively. Suramin markedly inhibited the PLA2 activity in a concentration-dependent way (1-30 µM). Being suramin a polyanion molecule, the effects observed may be due to the interaction of its charges with the polycation components present in A. mellifera bee venom.


Subject(s)
Antivenins/pharmacology , Bee Venoms/pharmacology , Muscle Fibers, Skeletal/drug effects , Suramin/pharmacology , Animals , Bee Venoms/antagonists & inhibitors , Capillary Permeability/drug effects , Cells, Cultured , Creatine Kinase/blood , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Endothelium, Vascular/drug effects , Erythrocytes/drug effects , Evans Blue , Hematocrit , Injections, Intramuscular , Longevity/drug effects , Male , Mice , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/pathology , Phospholipases A2/metabolism , Rats , Sarcolemma/drug effects , Sarcolemma/enzymology , Skin/blood supply
3.
J Ethnopharmacol ; 145(1): 50-8, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23123799

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Although serotherapy against snakebite has been discovered more than one hundred years ago, antivenom is not available all over Brazil. The use of plants from folk medicine is common mainly in the Brazilian Amazon area. One of these plants is named Humirianthera ampla (HA). MATERIALS AND METHODS: We have investigated HA extract and constituents' antiophidic activity in different experimental protocols against some Bothrops snake venoms (Bothrops jararacussu, Bothrops atrox and Bothrops jararaca). The protocols investigated include phospholipase, proteolytic, pro-coagulant, hemorrhagic, edematogenic and myotoxic activities induced by these venoms in Swiss mice. RESULTS: All the venoms caused an increase in the rate of creatine kinase (CK) release from isolated muscles, indicating damage to the sarcolemma. The crude extract of HA decreased the myotoxic activity in a concentration-dependent fashion. The presence of HA 300 µg/mL decreased up to 96% of Bothrops jararacussu and 94% of Bothrops atrox myotoxicity after 90 min of exposure. In vivo myotoxicity of Bothrops atrox venom was decreased in 75% when the venom was preincubated with HA 500 mg/kg. Similar results were observed with lupeol against Bothrops jararacussu and Bothrops atrox venoms. The hemorrhagic activity was evaluated by intradermal injection of Bothrops atrox venom. Preincubation and oral pre- and posttreatment with HA decreased hemorrhage by 100%, 45% and 45%, respectively. Bothrops atrox venom also induced formation of edema, which was significantly inhibited by pre- and posttreatment with HA. All the venoms showed extensive pro-coagulating properties, and these activities were inhibited by up to 90% with HA, which presented concentration-dependent inhibition. Finally, proteolytic and phospholipase activities of the venoms were all inhibited by increasing concentrations of HA, lupeol and sitosterol. The inhibition of these activities might help explain the actions against in vivo myotoxicity and the in vivo effects observed, i.e., edema, myotoxicity, pro-coagulation and hemorrhage. CONCLUSIONS: Altogether, our results give support for the popular use of HA extracts in cases of accidents with snakes, suggesting that it can be used as an adjunct in the management of venomous snakebites.


Subject(s)
Antivenins/therapeutic use , Bothrops , Crotalid Venoms/antagonists & inhibitors , Magnoliopsida/chemistry , Pentacyclic Triterpenes/therapeutic use , Phytotherapy/methods , Plant Extracts/therapeutic use , Sitosterols/therapeutic use , Animals , Antivenins/pharmacology , Brazil , Crotalid Venoms/adverse effects , Edema/drug therapy , Ethanol/chemistry , Hemorrhage/drug therapy , Male , Mice , Muscles/drug effects , Pentacyclic Triterpenes/pharmacology , Phospholipases/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Sitosterols/pharmacology
4.
Toxicon ; 55(2-3): 488-96, 2010.
Article in English | MEDLINE | ID: mdl-19883675

ABSTRACT

We investigated a synthetic coumestan named LQB93 and similar compounds abilities to antagonize activities of Bothrops jararacussu and Bothrops jararaca crude venoms in different protocols. The antimyotoxic activity was evaluated in vitro by the rate of release of creatine kinase (CK) from isolated mouse extensor digitorum longus muscle (EDL) induced by B. jararacussu (25 g/ml). For in vivo studies, B. jararacussu venom (1.0 mg/kg) was preincubated with LQB93 (0.1-30 mg/kg), during 30 min, for later injection in mouse tight and evaluation of the antimyotoxic and anti-edematogenic effects. LQB93 antagonized in vitro, the increase of CK release from the EDL muscle (IC(50)=0.0291 M). It also showed in vivo, antimyotoxic and anti-edematogenic effects that were dose-dependent with ID50 of 0.17 mg/kg and 0.14 mg/kg, respectively. The hemorrhage induced by B. jararaca (1.0 mg/kg) venom in the mouse skin, was abolished by LQB93 (10.0 mg/kg) preincubated with venom. Like wedelolactone, LQB93 protected rat isolated heart on a Langendorff preparation, from the cardiotoxicity of B. jararacussu venom. LQB93 inhibit the effects of Bothrops venoms like wedelolactone, a natural compound isolated from the plant Eclipta prostrata.


Subject(s)
Bothrops/physiology , Coumarins/pharmacology , Coumestrol/analogs & derivatives , Crotalid Venoms/antagonists & inhibitors , Animals , Coumarins/chemical synthesis , Coumestrol/chemical synthesis , Coumestrol/pharmacology , Creatine Kinase/analysis , Creatine Kinase/metabolism , Crotalid Venoms/toxicity , Edema/chemically induced , Edema/pathology , Heart/drug effects , Hemorrhage/blood , Hemorrhage/chemically induced , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Myocardium/pathology , Peptide Hydrolases/analysis , Phospholipases/analysis , Rats
5.
Toxicon ; 52(4): 551-8, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18675839

ABSTRACT

We investigated the myotoxicity of Bothrops jararacussu crude venom and other cytolytic agents on mouse isolated extensor digitorum longus (EDL) and soleus (SOL) muscles, which present distinct properties: EDL is a fast-twitch, white muscle with predominantly glycolytic fibers, while SOL is slow-twitch, red muscle with predominantly oxidative fibers. Muscles were exposed to B. jararacussu crude venom (25 microg/ml) and other crotaline venoms (Agkistrodon contortrix laticinctus; Crotalus viridis viridis; Crotalus durissus terrificus) at the same concentration. Basal creatine kinase (CK) release to bathing solution was 0.43+/-0.06 for EDL and 0.29+/-0.06 for SOL (U g(-)(1) h(-)(1), n=36 for each muscle). Sixty minutes after exposure to B. jararacussu venom, EDL presented higher increase in the rate of CK release than SOL, respectively, 13.2+/-1.5 and 2.9+/-0.7 U g(-)(1)h(-)(1), n=10-12. Muscle denervation, despite decreasing CK content, did not affect sensitivities to B. jararacussu venom. Ouabain and potassium channel blockers (TEA; clotrimazole; glibenclamide) increased the rate of CK release by B. jararacussu in EDL and SOL muscles, decreasing and almost abolishing the different sensitivity. When we exposed EDL or SOL muscles to Naja naja, Apis mellifera venoms (25 microg/ml), or Triton X-100 (0.01%), they showed similar rate of CK release. Our present data suggest that a mechanism involving intracellular calcium regulation or potassium channels may participate in the different sensitivity of EDL and SOL to B. jararacussu venom.


Subject(s)
Crotalid Venoms/toxicity , Muscle, Skeletal/drug effects , Potassium Channel Blockers/toxicity , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Animals , Bothrops , Creatine Kinase/metabolism , In Vitro Techniques , Mice , Muscle Denervation , Muscle, Skeletal/innervation , Muscle, Skeletal/pathology , Ouabain/pharmacology , Potassium Channels/physiology , Toxicity Tests
6.
Toxicon ; 50(2): 196-205, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17466354

ABSTRACT

Despite preventing death after snakebites, there is little evidence that polyvalent antivenoms (PAVs) protect against myotoxicity and local damages. We evaluated antibothropic Brazilian PAVs from three manufacturers against the myotoxicity and hemorrhagic activity of Bothrops jararacussu and B. jararaca venoms, respectively, by using two protocols: preincubation of PAVs with venom, and i.v. pretreatment with PAVs, prior to the venom inoculation. In this investigation, we used doses of PAVs ranging from 0.4 to 4.0mL/mg of venom equivalent up to 10 times the amount recommended by the producers for the clinical practice in Brazil. In our preincubation protocol in vivo, PAVs antagonized myotoxicity of B. jararacussu venom by 40-95%, while our pretreatment protocol antagonized myotoxic activity by 0-60%. Preincubation of antivenoms with B. jararaca venom antagonized its hemorrhagic activity by 70-95%, while pretreatment antagonized hemorrhagic activity by 10-50%. Although all PAVs demonstrated partial antagonism against both venoms, the magnitude of these effects varied greatly among the manufactures. The results suggest that the current clinical doses of these PAVs may have negligible antimyotoxic effect.


Subject(s)
Antivenins/therapeutic use , Bothrops/physiology , Crotalid Venoms/antagonists & inhibitors , Crotalid Venoms/toxicity , Hemorrhage/chemically induced , Hemorrhage/prevention & control , Muscular Diseases/prevention & control , Animals , Brazil , Crotalid Venoms/enzymology , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Mice , Muscular Diseases/chemically induced , Muscular Diseases/pathology , Necrosis , Peptide Hydrolases/toxicity , Phospholipases/antagonists & inhibitors , Phospholipases/toxicity , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...