ABSTRACT
The production of tambaqui Colossoma macropomum has been undergoing financial losses due to parasitic infection by the acanthocephalan Neoechinorhynchus buttnerae, raising an alert for aquaculture in South America. The lack of adequate treatment and use of unlicensed chemicals encourages research for alternative solutions with minimal side effects. The objectives of this study were to evaluate the in vitro antiparasitic potential of commercial nutraceutical products (Natumix® and BioFish®) against N. buttnerae and to assess the respective in vivo toxic effects on the host tambaqui. For in vitro assays, parasitized fish were necropsied for acanthocephalans sampling. The parasites were exposed to three concentrations (0.078, 0.313 and 1.25 mg/ml) of each product, as well as controls (one without product and another with a solubilizer). For the in vivo acute toxicity test, juvenile fish (<0.1 g) were exposed to five increasing concentrations of each product. Mortality of tambaqui was recorded at 24, 48, 72 and 96 h. The estimated lethal concentration (LC) for 10, 50, 90 and 99% of fish was determined to classify the toxicity of the products on the target species. After in vitro efficacy tests, the highest concentrations (1.25 mg/ml) caused 100% mortality of the parasites in both products, but only Natumix® caused 100% mortality using the intermediate concentration (0.313 mg/ml) after 24 h. According to the acute toxicity result, the LC50 classified the nutraceutical products as slightly toxic for tambaqui. The tested products had a parasiticidal effect on N. buttnerae, and the toxicity test showed that both products have therapeutic potential when added to the diet.
Subject(s)
Acanthocephala/drug effects , Anthelmintics/pharmacology , Characiformes/parasitology , Dietary Supplements/analysis , Fish Diseases/parasitology , Helminthiasis, Animal/parasitology , Acanthocephala/physiology , Animals , Anthelmintics/analysis , Anthelmintics/toxicity , Aquaculture , Characiformes/growth & development , Fish Diseases/drug therapy , Helminthiasis, Animal/drug therapy , Lethal Dose 50 , South AmericaABSTRACT
A new species of Astyanax is described from the upper Rio Paraguai basin, Mato Grosso State, Brazil. The new species can be distinguished from congeners by having the body intensely yellowish in life (v. silvery, reddish or lightly yellow) and by morphometric and meristics traits. Astyanax dolinae n. sp. cannot be assigned to any of the Astyanax species complex currently recognized for the genus. It is only known from the Dolina Água Milagrosa, a karstic sinkhole lake, entirely fed by groundwater, surrounded by Cerrado, the savannah-like vegetation of central South America.
Subject(s)
Characidae/classification , Animals , Brazil , Characidae/anatomy & histology , Ecosystem , Lakes , Social Isolation , Species SpecificityABSTRACT
Abstract Clove oil is used as a fish anesthetic because it is a natural and inexpensive product with low toxicity risks. The goal of the present study was to determine the appropriate concentration of clove oil for small-sized tropical fish to be used in mark-recapture studies or when individuals are to be sacrificed. We applied three different clove oil concentrations (D1=0.05 mL, D2=0.10 mL and D3=0.20 mL per 500 mL of water) on three small-sized fish species. We found a negative relationship between induction time and treatment for two species (Hyphessobrycon sp.1 and Hemigrammus sp.), while concentration was unrelated to recovery time. Fish body length was positively related to induction time in the D2 treatment for Hemigrammus sp., and negatively for Hyphessobrycon sp.1 in the D1 treatment, but was unrelated to recovery time for three species and treatments. Mortality rates varied across treatments, but higher rates were observed with higher clove oil concentrations. We conclude that 0.05 mL of clove oil per 500 mL of water is the most efficient dose for studies where fish will be released back to their natural habitats, while 0.20 mL of clove oil is recommended for studies that require fish euthanization for further laboratory analyses.
Resumo O óleo de cravo é recomendado como anestésico para peixes por ser produto de origem natural, baixo custo e apresentar poucos riscos de intoxicação. O objetivo deste trabalho foi determinar concentrações adequadas de óleo de cravo para anestesiar ou eutanasiar peixes de pequeno porte em ambiente natural. Foram testadas três concentrações do anestésico (D1=0,05 mL, D2=0,10 mL e D3=0,20 mL) em três espécies de peixes de pequeno. Houve uma relação negativa entre o tempo para a sedação dos indivíduos e a concentração para duas espécies (Hyphessobrycon sp.1 e Hemigrammus sp.), porém não foi encontrada relação entre o tempo para recuperação e as concentrações. Os exemplares maiores de Hemigrammus sp. levaram mais tempo para serem sedados no tratamento D2, já o contrário foi observado para Hyphessobrycon sp.1 no tratamento D1, enquanto que não houve efeito do comprimento no tempo de recuperação das três espécies. A mortalidade dos indivíduos variou entre as três concentrações do anestésico e as maiores taxas de mortalidade ocorreram nas maiores concentrações. Desse modo, a concentração de 0,05 mL é eficiente para estudos que envolvem manuseio e a soltura dos peixes, enquanto que a concentração de 0,20 mL é recomendada em estudos onde os peixes precisam ser sacrificados.
Subject(s)
Animals , Euthanasia , Clove Oil , Fishes , AnesthesiaABSTRACT
Clove oil is used as a fish anesthetic because it is a natural and inexpensive product with low toxicity risks. The goal of the present study was to determine the appropriate concentration of clove oil for small-sized tropical fish to be used in mark-recapture studies or when individuals are to be sacrificed. We applied three different clove oil concentrations (D1=0.05 mL, D2=0.10 mL and D3=0.20 mL per 500 mL of water) on three small-sized fish species. We found a negative relationship between induction time and treatment for two species (Hyphessobrycon sp.1 and Hemigrammus sp.), while concentration was unrelated to recovery time. Fish body length was positively related to induction time in the D2 treatment for Hemigrammus sp., and negatively for Hyphessobrycon sp.1 in the D1 treatment, but was unrelated to recovery time for three species and treatments. Mortality rates varied across treatments, but higher rates were observed with higher clove oil concentrations. We conclude that 0.05 mL of clove oil per 500 mL of water is the most efficient dose for studies where fish will be released back to their natural habitats, while 0.20 mL of clove oil is recommended for studies that require fish euthanization for further laboratory analyses.
Subject(s)
Anesthesia , Clove Oil , Euthanasia , Fishes , AnimalsABSTRACT
INTRODUCTION: The therapeutic potential of adult stem cells for the treatment of chronic diseases is becoming increasingly evident over the last few years. In the present study, we sought to assess whether the infusion of bone marrow-derived mononuclear cells (MoSCs) and mesenchymal cells (MSCs) could reduce/stabilize the rate of progression of chronic renal failure (CRF) in rats. METHODS: We used the 5/6 renal mass reduction model to induce chronic renal failure in male Wistar rats. Renal function was assessed by measurements of serum creatinine (sCr), creatinine clearance (Clcr), and 24-hour proteinuria at baseline as well as 60 and 120 days after surgery. MoSCs and MSCs obtained from bone marrow aspirates were separated by the Ficoll-Hypaque method. After a 12- to 14-day culture, 1.5 x 10(6) MSCs and the same number of MoSCs were injected into the renal parenchyma of the remanant kidney of rats with CRF on the day of surgery. RESULTS: Among the control group, at day 120, the results were sCr = 1.31 +/- 0.5 mg/dL, Clcr = 0.64 +/- 0.35 mL/min, and proteinuria = 140.0 +/- 57.7 mg/24 h. Rats treated with MoSCs at day 120 had sCr = 0.81 +/- 0.20 mg/dL, Clcr = 1.05 +/- 0.26 mL/min, and proteinuria = 61 +/- 46.5 mg/24 h, while rats injected with MSCs had sCr = 0.95 +/- 0.1 mg/dL, Clcr = 0.68 +/- 0.24 mL/min, and proteinuria = 119.2 +/- 50.0 mg/24 h. Analysis of the progression to CRF showed that the treatment significantly reduced the rate of decline in Clcr after treatment with MoSc: control: -0.0049 +/- 0.0024 mL/min/d versus MSC: - 0.0013 +/- 0.0017 mL/min/d versus MoSC: +0.0002 +/- 0.0016 mL/min/d (P = .017). Proteinuria tended to be lower among the treated groups. Histological scores of chronic damage were not different, but distinct patterns of chronic lesions were observed among treated rats. CONCLUSION: Our results showed that progression of CRF in rats could be slowed/stabilized by intrarenal parenchymal injection of MoSCs. A trend toward reduction in the progression rate of CRF was also observed with injection of MSCs.