Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7369, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36450753

ABSTRACT

Antiferromagnetic (AFM) skyrmions are envisioned as ideal localized topological magnetic bits in future information technologies. In contrast to ferromagnetic (FM) skyrmions, they are immune to the skyrmion Hall effect, might offer potential terahertz dynamics while being insensitive to external magnetic fields and dipolar interactions. Although observed in synthetic AFM structures and as complex meronic textures in intrinsic AFM bulk materials, their realization in non-synthetic AFM films, of crucial importance in racetrack concepts, has been elusive. Here, we unveil their presence in a row-wise AFM Cr film deposited on PdFe bilayer grown on fcc Ir(111) surface. Using first principles, we demonstrate the emergence of single and strikingly interpenetrating chains of AFM skyrmions, which can co-exist with the rich inhomogeneous exchange field, including that of FM skyrmions, hosted by PdFe. Besides the identification of an ideal platform of materials for intrinsic AFM skyrmions, we anticipate the uncovered knotted solitons to be promising building blocks in AFM spintronics.

2.
Nat Commun ; 11(1): 2833, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32504062

ABSTRACT

Understanding interactions of magnetic textures with defects is crucial for applications such as racetrack memories or microwave generators. Such interactions appear on the few nanometer scale, where imaging has not yet been achieved with controlled external forces. Here, we establish a method determining such interactions via spin-polarized scanning tunneling microscopy in three-dimensional magnetic fields. We track a magnetic vortex core, pushed by the forces of the in-plane fields, and discover that the core (~ 104 Fe-atoms) gets successively pinned close to single atomic-scale defects. Reproducing the core path along several defects via parameter fit, we deduce the pinning potential as a mexican hat with short-range repulsive and long-range attractive part. The approach to deduce defect induced pinning potentials on the sub-nanometer scale is transferable to other non-collinear spin textures, eventually enabling an atomic scale design of defect configurations for guiding and reliable read-out in race-track type devices.

3.
J Phys Condens Matter ; 32(42): 425802, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32541095

ABSTRACT

Resting on multi-scale modelling simulations, we explore dynamical aspects characterizing magnetic skyrmions driven by spin-transfer-torque towards repulsive and pinning 3d and 4d single atomic defects embedded in a Pd layer deposited on the Fe/Ir(111) surface. The latter is known to host sub-10 nm skyrmions which are of great interest in information technology. The Landau-Lifshitz-Gilbert equation is parametrized with magnetic exchange interactions extracted from the ab-initio all-electron full potential Korringa-Kohn-Rostoker Green function method, where spin-orbit coupling is added self-consistently. Depending on the nature of the defect and the magnitude of the applied magnetic field, the skyrmion deforms by either shrinking or increasing in size, experiencing thereby elliptical distortions. After applying a magnetic field of 10 T, ultrasmall skyrmions are driven along a straight line towards the various defects which permits a simple analysis of the impact of the impurities. Independently from the nature of the skyrmion-defect complex interaction, being repulsive or pinning, a gyrotropic motion is observed. A repulsive force leads to a skyrmion trajectory similar to the one induced by an attractive one. We unveil that the circular motion is clockwise around pinning impurities but counter clockwise around the repulsive ones, which can be used to identify the interaction nature of the defects by observing the skyrmions trajectories. Moreover, and as expected, the skyrmion always escapes the repulsive defects in contrast to the pinning defects, which require a minimal depinning current to observe impurity avoidance. This unveils the richness of the motion regimes of skyrmions. We discuss the results of the simulations in terms of the Thiele equation, which provides a reasonable qualitative description of the observed phenomena. Finally, we show an example of a double track made of pinning impurities, where the engineering of their mutual distance allows to control the skyrmion motion with enhanced velocity.

4.
Nat Commun ; 10(1): 1293, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30874559

ABSTRACT

The original version of this Article contained an error in the Acknowledgements, which incorrectly omitted from the end the following: 'We acknowledge the computing time granted by the JARA-HPC Vergabegremium and VSR commission on the supercomputer JURECA at Forschungszentrum Jülich.' This has been corrected in both the PDF and HTML versions of the Article.

SELECTION OF CITATIONS
SEARCH DETAIL
...