Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(43)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34271563

ABSTRACT

The urgency for new materials in oncology is immediate. In this study we have developed the g-C3N4, a graphitic-like structure formed by periodically linked tris-s-triazine units. The g-C3N4has been synthesized by a simple and fast thermal process. XRD has shown the formation of the crystalline sheet with a compacted structure. The graphite-like structure and the functional groups have been shown by Raman and FTIR spectroscopy. TEM image and AFM revealed the porous composed of five or six C-N layers stacked. DRS and Photoluminescence analyses confirmed the structure with band gap of 2.87 eV and emission band at 448 nm in different wavelengths excitation conditions. The biological results showed inhibitory effect on cancer cell lines and non-toxic effect in normal cell lines. To the best of our knowledge, this is the first work demonstrating the cytotoxic effects of 2D g-C3N4in a cancer cell line, without any external or synergistic influence. The biodistribution/tissue accumulation showed that g-C3N4present a tendency to accumulation on the lung in the first 2 h, but after 24 h the profile of the biodistribution change and it is found mainly in the liver. Thus, 2D-g-C3N4showed great potential for the treatment of several cancer types.


Subject(s)
Cell Survival , Graphite/chemical synthesis , Graphite/metabolism , Nitrogen Compounds/chemical synthesis , Nitrogen Compounds/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Humans , Tissue Distribution
2.
Biochimie ; 128-129: 174-82, 2016.
Article in English | MEDLINE | ID: mdl-27554339

ABSTRACT

ADAMs are transmembrane multifunctional proteins that contain disintegrin and metalloprotease domains. ADAMs act in a diverse set of biological processes, including fertilization, inflammatory responses, myogenesis, cell migration, cell proliferation and ectodomain cleavage of membrane proteins. These proteins also have additional functions in pathological processes as cancer and metastasis development. ADAM9 is a member of ADAM protein family that is overexpressed in several types of human carcinomas. The aim of this study was to investigate the role of ADAM9 in hematogenous and lymphatic tumor cell dissemination assisting the development of new therapeutic tools. The role of ADAM9 in the interaction of breast tumor cells (MDA-MB-231) and endothelial cells was studied through RNA silencing. ADAM9 silencing in MDA-MB-231 cells had no influence in expression of several genes related to the metastatic process such as ADAM10, ADAM12, ADAM17, cMYC, MMP9, VEGF-A, VEGF-C, osteopontin and collagen XVII. However, there was a minor decrease in ADAM15 expression but an increase in that of MMP2. Moreover, ADAM9 silencing had no effect in the adhesion of MDA-MB-231 cells to vascular (HMEC-1 and HUVEC) and lymphatic cells (HMVEC-dLyNeo) under flow condition. Nevertheless, siADAM9 in MDA-MB-231 decreased transendothelial cell migration in vitro through HUVEC, HMEC-1 and HMVEC-dLyNeo (50%, 40% and 32% respectively). These results suggest a role for ADAM9 on the extravasation step of the metastatic cascade through both blood and lymph vessels.


Subject(s)
ADAM Proteins/genetics , Endothelial Cells/metabolism , Membrane Proteins/genetics , RNA Interference , Transendothelial and Transepithelial Migration/genetics , ADAM Proteins/metabolism , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Line , Cell Line, Tumor , Cells, Cultured , Gene Expression Regulation , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Membrane Proteins/metabolism , Microscopy, Video , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...