Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Pers Med ; 13(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37623513

ABSTRACT

Congenital heart diseases (CHDs) are structural or functional defects present at birth due to improper heart development. Current therapeutic approaches to treating severe CHDs are primarily palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed from faulty embryogenesis. However, earlier interventions during embryonic development have the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong morbidity. Extensive research on heart development has identified key steps, cellular players, and the intricate network of signaling pathways and transcription factors governing cardiogenesis. Additionally, some reports have indicated that certain adverse genetic and environmental conditions leading to heart malformations and embryonic death may be amendable through the activation of alternative mechanisms. This review first highlights key molecular and cellular processes involved in heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions during early gestation may offer a prophylactic approach toward reducing the occurrence and severity of CHDs.

2.
Cells ; 12(13)2023 06 27.
Article in English | MEDLINE | ID: mdl-37443761

ABSTRACT

Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Adult , Humans , Heart Diseases/therapy , Embryonic Stem Cells
4.
Front Med (Lausanne) ; 9: 884061, 2022.
Article in English | MEDLINE | ID: mdl-35692552

ABSTRACT

Peritoneal protein loss (PPL) has been correlated with mortality, malnutrition and inflammation. More recently overhydration was brought to the equation. This study aims to review classic and recent factors associated with PPL. Prevalent and incident peritoneal dialysis (PD) patients were included. Dialysate and serum IL-6 was obtained during PET. Hydration and nutritional status were assessed by bio-impedance. Linear regression and Cox regression were performed. The 78 included patients presented median values of PPL 4.8 g/24 h, serum IL-6: 5.1 pg/mL, and IL-6 appearance rate 153.5 pg/min. Mean extracellular water excess (EWexc) was 0.88 ± 0.94 L, and lean body mass index (LBMI) 17.3 ± 2.4 kg/m2. After mean follow-up of 33.9 ± 29.3 months, 12 patients died. Linear univariable analysis showed positive associations between PPL and small solute transport, body composition (LBMI and EWexc), comorbidities and performing CAPD (vs. cycler). PPL correlated positively with dialysate appearance rate of IL-6, but not with serum IL-6. Linear multivariable analysis confirmed positive association between PPL and EWexc (p = 0.012; 95%CI: 4.162-31.854), LBMI (p = 0.008; 95%CI: 1.720-11.219) and performing CAPD (p = 0.023; 95%CI: 4.375-54.190). In survival analysis, no relationship was found between mortality and PPL. Multivariable Cox regression showed Charlson Comorbidity Index (HR: 1.896, 95%CI: 1.235-2.913), overhydration (HR: 10.034, 95%CI: 1.426-70.587) and lower PPL (HR: 0.576, 95%CI: 0.339-0.978) were predictors for mortality. Overhydration, was a strong predictor of PPL, overpowering variables previously reported as determinants of PPL, namely clinical correlates of endothelial dysfunction or local inflammation. PPL were not associated with malnutrition or higher mortality, emphasizing the importance of volume overload control in PD patients.

5.
Biochem Biophys Res Commun ; 598: 95-99, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35151978

ABSTRACT

Prion proteins constitute a major public health concern, which has partly overshadowed their physiological roles in several scenarios. Indeed, these proteins were implicated in male fertility but their role in female fertility is relatively less explored. This study was designed to evaluate the role of SPRN and PRNP prion family genes in bovine follicular steroidogenesis pathways. Post-transcriptional SPRN and PRNP silencing with siRNAs was established in bovine granulosa cell (GC) in vitro culture, and gene expression and progesterone and estradiol concentrations were evaluated. SPRN knockdown, led to a downregulation of CYP11A1 mRNA levels (2.1-fold), and PRNP knockdown led to an upregulation of SPRN mRNA levels (2.3-fold). CYP19A1 expression and estradiol synthesis was not detected in any experimental group. Finally, SPRN knockdown led to a mild reduction in progesterone production in GCs and this was the only experimental group that did not exhibit an increment in progesterone levels after 48 h of culture. As a conclusion, it was possible to detect the expression of the SPRN gene in bovine GCs, a potential interaction between SPRN and PRNP regulation, and the impact of SPRN expression on CYP11A1 and progesterone levels. These findings bring new insights into the role of these genes in ovarian steroidogenesis and female reproductive physiology.


Subject(s)
Estradiol/metabolism , Granulosa Cells/physiology , Prion Proteins/genetics , Progesterone/metabolism , Animals , Aromatase/genetics , Aromatase/metabolism , Cattle , Cells, Cultured , Cholesterol Side-Chain Cleavage Enzyme/genetics , Estradiol/genetics , Female , Gene Expression Regulation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Prion Proteins/metabolism , Progesterone/genetics , RNA Interference
6.
World J Clin Oncol ; 11(5): 260-274, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32728529

ABSTRACT

CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.

7.
Biochem Biophys Res Commun ; 510(2): 272-277, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30711250

ABSTRACT

Activation of the receptor activator of nuclear factor-κB (RANK) by its ligand (RANKL) is involved in both solid and hematological malignancies, including multiple myeloma, acute myeloid leukemia and B-cell leukemia. Although RANKL expression has been described in normal T cells, a potential role in T-cell leukemia remains undefined. Here, we used a model of immature T-cell leukemia/lymphoma, the TEL-JAK2 transgenic mice, to assess RANKL expression in leukemic cells and its regulatory mechanisms. We found that Rankl mRNA was significantly overexpressed in leukemic T cells when compared to wild-type thymocytes, their nonmalignant counterparts. Moreover, Rankl mRNA and RANKL surface expression in leukemic cells was induced by T-cell receptor (TCR) signaling activation, dependently on the NF-κB signaling pathway. These results indicate that TCR-activated leukemic T cells express high levels of RANKL and are potential inducers of RANK signaling in microenvironmental cells.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, T-Cell/metabolism , NF-kappa B p50 Subunit/metabolism , RANK Ligand/metabolism , Animals , Cell Line, Tumor , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NF-kappa B p50 Subunit/genetics , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Thymocytes/metabolism , Tumor Microenvironment
8.
Carcinogenesis ; 39(12): 1463-1476, 2018 12 31.
Article in English | MEDLINE | ID: mdl-30256907

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) and T-lymphoblastic lymphomas (T-LBL) are aggressive malignancies of thymocytes. The role of thymic microenvironmental cells and stromal factors in thymocyte malignant transformation and T-ALL development remains little explored. Here, using the TEL-JAK2 transgenic (TJ2-Tg) mouse model of T-ALL/LBL, which is driven by constitutive JAK/STAT signaling and characterized by the acquisition of Notch1 mutations, we sought to identify stromal cell alterations associated with thymic leukemogenesis. Immunofluorescence analyses showed that thymic lymphomas presented epithelial areas characterized by keratin (Krt) 5 and Krt8 expression, adjacently to epithelial-free areas negative for Krt expression. Both areas contained abundant laminin (extracellular matrix) and ER-TR7+ (fibroblasts) CD31+ (endothelial) and CD11c+ (dendritic) cells. Besides Krt5, Krt-positive areas harbored medullary thymic epithelial cells (TECs) labeled by Ulex europaeus agglutinin-1. By performing flow cytometry and RNA sequencing analyses of thymic lymphomas, we observed an enrichment in medullary TEC markers in detriment of cortical TEC markers. To assess whether TECs are important for T-ALL/LBL development, we generated TJ2-Tg mice heterozygous for the FoxN1 transcription factor nude null mutation (Foxn1+/nu). Strikingly, in TJ2-Tg;Foxn1+/nu compound mice, both emergence of malignant cells in preleukemic thymi and overt T-ALL onset were significantly delayed. Moreover, in transplantation assays, leukemic cell expansion within the thymus of recipient Foxn1+/nu mice was reduced as compared with control littermates. Since thymopoesis is largely normal in Foxn1+/nu mice, these results indicate that FoxN1 haploinsufficiency in TECs has a more profound impact in thymic leukemogenesis.


Subject(s)
Carcinogenesis/pathology , Epithelial Cells/pathology , Forkhead Transcription Factors/genetics , Leukemia, T-Cell/genetics , Leukemia, T-Cell/pathology , Thymus Gland/pathology , Animals , Biomarkers, Tumor , Cell Differentiation/genetics , Disease Models, Animal , Epithelium/pathology , Mice , Mice, Inbred C57BL , Mice, Nude , Mice, Transgenic/genetics , Mutation/genetics , Sequence Analysis, RNA/methods , Signal Transduction/genetics , Stromal Cells/pathology
9.
Pharmacogn Mag ; 12(Suppl 2): S285-91, 2016 May.
Article in English | MEDLINE | ID: mdl-27279721

ABSTRACT

BACKGROUND: Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz (Fabaceae) is a tree which is native to Brazil, widely known as "Jucá," where its herbal derivatives are used in folk medicine with several therapeutic properties. The constituents, which have already been described in the fruit, are mainly hydrolysable tannins (gallic acid [GA] and ellagic acid [EA]). OBJECTIVE: The aim of this study was to investigate the phenolic variability in the fruit of L. ferrea by ultraviolet/visible (UV/VIS) and chromatographic methods (high-performance liquid chromatography [HPLC]/high-performance thin layer chromatography [HPTLC]). MATERIALS AND METHODS: Several samples were collected from different regions of Brazil and the qualitative (fingerprints by HPTLC and HPLC) and quantitative analysis (UV/VIS and HPLC) of polyphenols were performed. RESULTS: The HPTLC and HPLC profiles allowed separation and identification of both major analytical markers: EA and GA. The chemical profiles were similar in a number of spots or peaks for the samples, but some differences could be observed in the intensity or area of the analytical markers for HPTLC or HPLC, respectively. Regarding the quantitative analysis, the polyphenolic content by UV/VIS ranged from 13.99 to 37.86 g% expressed as GA or from 10.75 to 29.09 g% expressed as EA. The contents of EA and GA by liquid chromatography-reversed phase (LC-RP) method ranged from 0.57 to 2.68 g% and from 0.54 to 3.23 g%, respectively. CONCLUSION: The chemical profiles obtained by HPTLC or HPLC, as well as the quantitative analysis by spectrophotometry or LC-RP method, were suitable for discrimination of each herbal sample and can be used as tools for the comparative analysis of the fruits from L. ferrea. SUMMARY: The polyphenols of fruits of Libidibia ferrea can be quantified by UV/VIS and HPLCThe HPLC method was able to detect the gallic and ellagic acids in several samples of fruits of Libidibia ferreaThe phenolic profiles of fruits from Libidibia ferrea by HPTLC and HPLC were reproductible. Abbreviations used: HPTLC: high performance thin layer chromatography, HPLC: high performance liquid chromatography, UV-Vis: spectrophotometry.

10.
Biochim Biophys Acta ; 1865(2): 204-19, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26923876

ABSTRACT

The LTα1ß2 and LIGHT TNF superfamily cytokines exert pleiotropic physiological functions through the activation of their cognate lymphotoxin-ß receptor (LTßR). Interestingly, since the discovery of these proteins, accumulating evidence has pinpointed a role for LTßR signaling in carcinogenesis. Early studies have shown a potential anti-tumoral role in a subset of solid cancers either by triggering apoptosis in malignant cells or by eliciting an anti-tumor immune response. However, more recent studies provided robust evidence that LTßR signaling is also involved in diverse cell-intrinsic and microenvironment-dependent pro-oncogenic mechanisms, affecting several solid and hematological malignancies. Consequently, the usefulness of LTßR signaling axis blockade has been investigated as a potential therapeutic approach for cancer. Considering the seemingly opposite roles of LTßR signaling in diverse cancer types and their key implications for therapy, we here extensively review the different mechanisms by which LTßR activation affects carcinogenesis, focusing on the diverse contexts and different models assessed.


Subject(s)
Lymphotoxin beta Receptor/physiology , Neoplasms/etiology , Signal Transduction/physiology , Animals , Humans , Inflammation/etiology , NF-kappa B/physiology , Tumor Microenvironment , Tumor Necrosis Factor Ligand Superfamily Member 14/physiology
11.
Br J Haematol ; 171(5): 736-51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26456771

ABSTRACT

Lymphotoxin-mediated activation of the lymphotoxin-ß receptor (LTßR; LTBR) has been implicated in cancer, but its role in T-cell acute lymphoblastic leukaemia (T-ALL) has remained elusive. Here we show that the genes encoding lymphotoxin (LT)-α and LTß (LTA, LTB) are expressed in T-ALL patient samples, mostly of the TAL/LMO molecular subtype, and in the TEL-JAK2 transgenic mouse model of cortical/mature T-ALL (Lta, Ltb). In these mice, expression of Lta and Ltb is elevated in early stage T-ALL. Surface LTα1 ß2 protein is expressed in primary mouse T-ALL cells, but only in the absence of microenvironmental LTßR interaction. Indeed, surface LT expression is suppressed in leukaemic cells contacting Ltbr-expressing but not Ltbr-deficient stromal cells, both in vitro and in vivo, thus indicating that dynamic surface LT expression in leukaemic cells depends on interaction with its receptor. Supporting the notion that LT signalling plays a role in T-ALL, inactivation of Ltbr results in a significant delay in TEL-JAK2-induced leukaemia onset. Moreover, young asymptomatic TEL-JAK2;Ltbr(-/-) mice present markedly less leukaemic thymocytes than age-matched TEL-JAK2;Ltbr(+/+) mice and interference with LTßR function at this early stage delayed T-ALL development. We conclude that LT expression by T-ALL cells activates LTßR signalling in thymic stromal cells, thus promoting leukaemogenesis.


Subject(s)
Lymphotoxin beta Receptor/physiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Lineage/genetics , Gene Expression/genetics , Humans , Immunophenotyping , Janus Kinase 2/genetics , Lymphotoxin beta Receptor/genetics , Lymphotoxin beta Receptor/metabolism , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Signal Transduction , Tumor Microenvironment/genetics
12.
Cancers (Basel) ; 2(4): 1838-60, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-24281204

ABSTRACT

Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL.

SELECTION OF CITATIONS
SEARCH DETAIL
...