Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chembiochem ; : e202400296, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008807

ABSTRACT

The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.

2.
ChemMedChem ; 17(1): e202100542, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34655454

ABSTRACT

This review presents the main aspects related to pharmacokinetic properties, which are essential for the efficacy and safety of drugs. This topic is very important because the analysis of pharmacokinetic aspects in the initial design stages of drug candidates can increase the chances of success for the entire process. In this scenario, experimental and in silico techniques have been widely used. Due to the difficulties encountered with the use of some experimental tests to determine pharmacokinetic properties, several in silico tools have been developed and have shown promising results. Therefore, in this review, we address the main free tools/servers that have been used in this area, as well as some cases of application. Finally, we present some studies that employ a multidisciplinary approach with synergy between in silico, in vitro, and in vivo techniques to assess ADME properties of bioactive substances, achieving successful results in drug discovery and design.


Subject(s)
Drug Design , Pharmaceutical Preparations/chemistry , Animals , Humans , Molecular Structure , Pharmaceutical Preparations/chemical synthesis
3.
Curr Opin Virol ; 50: 30-39, 2021 10.
Article in English | MEDLINE | ID: mdl-34340199

ABSTRACT

Flaviviruses are among the most critical pathogens in tropical regions and cause a growing number of severe diseases in developing countries. The development of antiviral therapeutics is crucial for managing flavivirus outbreaks. Among the ten proteins encoded in the flavivirus RNA, non-structural protein 5, NS5, is a promising drug target. NS5 plays a fundamental role in flavivirus replication, viral RNA methylation, RNA polymerization, and host immune system evasion. Most of the NS5 inhibitor candidates target NS5 active sites. However, the similarity of NS5 activity sites with human enzymes can cause side effects. Identifying new allosteric sites in NS5 can contribute enormously to antiviral development. The NS5 structural characterization enabled exploring new regions, such as the residues involved in MTase-RdRp interaction, NS5 oligomerization, and NS5 interaction with other viral and host-cell proteins. Targeting NS5 critical interactions might lead to new compounds and overcomes the toxicity of current NS5-inhibitor candidates.


Subject(s)
Flavivirus , Antiviral Agents/pharmacology , Flavivirus/genetics , Humans , RNA, Viral , Viral Nonstructural Proteins
SELECTION OF CITATIONS
SEARCH DETAIL