Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Polymers (Basel) ; 16(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38337275

ABSTRACT

Additive manufacturing (AM) or 3D printing (3DP) is arguably a versatile and more efficient way for the production of solid dosage forms such as tablets. Of the various 3DP technologies currently available, fused deposition modeling (FDM) includes unique characteristics that offer a range of options in the production of various types of tablets. For example, amorphous solid dispersions (ASDs), enteric-coated tablets or poly pills can be produced using an appropriate drug/polymer combination during FDM 3DP. The technology offers the possibility of evolving personalized medicines into cost-effective production schemes at pharmacies and hospital dispensaries. In this review, we highlight key FDM features that may be exploited for the production of tablets and improvement of therapy, with emphasis on gastrointestinal delivery. We also highlight current constraints that must be surmounted to visualize the deployment of this technology in the pharmaceutical and healthcare industries.

2.
Biomed Pharmacother ; 171: 116095, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183744

ABSTRACT

Head and neck cancer (HNC) is the sixth most common cancer type, accounting for approximately 277,597 deaths worldwide. Recently, the Food and Drug Administration (FDA) has approved immune checkpoint blockade (ICB) agents targeting programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) as a treatment regimen for head and neck squamous cell carcinomas (HNSCC). Studies have reported the role of immune checkpoint inhibitors as targeted therapeutic regimens that unleash the immune response against HNSCC tumors. However, the overall response rates to immunotherapy vary between 14-32% in recurrent or metastatic HNSCC, with clinical response and treatment success being unpredictable. Keeping this perspective in mind, it is imperative to understand the role of T cells, natural killer cells, and antigen-presenting cells in modulating the immune response to immunotherapy. In lieu of this, these immune molecules could serve as prognostic and predictive biomarkers to facilitate longitudinal monitoring and understanding of treatment dynamics. These immune biomarkers could pave the path for personalized monitoring and management of HNSCC. In this review, we aim to provide updated immunological insight on the mechanism of action, expression, and the clinical application of immune cells' stimulatory and inhibitory molecules as prognostic and predictive biomarkers in HNC. The review is focused mainly on CD27 and CD137 (members of the TNF-receptor superfamily), natural killer group 2 member D (NKG2D), tumor necrosis factor receptor superfamily member 4 (TNFRSF4 or OX40), S100 proteins, PD-1, PD-L1, PD-L2, T cell immunoglobulin and mucin domain 3 (TIM-3), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), indoleamine-pyrrole 2,3-dioxygenase (IDO), B and T lymphocyte attenuator (BTLA). It also highlights the importance of T, natural killer, and antigen-presenting cells as robust biomarker tools for understanding immune checkpoint inhibitor-based treatment dynamics. Though a comprehensive review, all aspects of the immune molecules could not be covered as they were beyond the scope of the review; Further review articles can cover other aspects to bridge the knowledge gap.


Subject(s)
Head and Neck Neoplasms , Immune Checkpoint Proteins , Humans , Squamous Cell Carcinoma of Head and Neck , B7-H1 Antigen/genetics , Programmed Cell Death 1 Receptor , Immunotherapy , Biomarkers
3.
Discov Med ; 36(180): 1-15, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273742

ABSTRACT

The tumor microenvironment (TME) exerts a profound influence on the oncogenesis and progression of various cancers, notably those instigated by the human papillomavirus (HPV) and the Epstein-Barr virus (EBV). The etiology of HPV and EBV-associated malignancies is rooted in intricate interactions that intertwine viral infections, genetic predispositions, and distinct TME dynamics. These interactions foster a milieu that can either support or hinder tumorigenic progression. Gaining in-depth knowledge of the TME's unique features, including its cellular composition, cytokine profiles, and metabolic alterations specific to HPV and EBV-associated cancers, is fundamental to innovating more efficacious therapeutic strategies. This review delineates the intricate roles of HPV and EBV in shaping the TME and expounds upon the unique TME characteristics specific to HPV and EBV-driven cancers. Additionally, we spotlight innovative approaches to remodel the TME, aiming to augment therapeutic efficacy in combatting HPV and EBV-associated neoplasms.


Subject(s)
Epstein-Barr Virus Infections , Neoplasms , Papillomavirus Infections , Humans , Herpesvirus 4, Human , Epstein-Barr Virus Infections/complications , Papillomavirus Infections/complications , Human Papillomavirus Viruses , Tumor Microenvironment , Carcinogenesis , Papillomaviridae/genetics
4.
Life Sci ; 338: 122390, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38160787

ABSTRACT

The correlation between chronic inflammation and cancer was initially identified in the 19th century. Biomolecules like interleukins, chemokines, tumor necrosis factors, growth factors, and adhesion molecules, which regulate inflammation, are recognized contributors to neoplastic transformation through various mechanisms, including oncogenic mutations, resistance to apoptosis, and adaptive responses like angiogenesis. This review aims to establish connections between the intricate and complex mechanisms of chronic inflammation and cancer. We illuminate implicit signaling mechanisms that drive the association between chronic inflammation and the initiation/progression of cancer, exploring potential impacts on other diseases. Additionally, we discuss the modalities of currently available therapeutic options for chronic inflammation and cancer, emphasizing the dual nature of such therapies. A thorough understanding of the molecular basis of chronic inflammation is crucial for developing novel approaches in the prevention and treatment of cancer.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Inflammation/therapy , Cell Transformation, Neoplastic/pathology
5.
Eur J Pharm Sci ; 191: 106586, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37729956

ABSTRACT

Cancer remains one of the leading causes of mortality worldwide, presenting a significant healthcare challenge owing to the limited efficacy of current treatments. The application of nanotechnology in cancer treatment leverages the unique optical, magnetic, and electrical attributes of nanomaterials to engineer innovative, targeted therapies. Specifically, manipulating nanomaterials allows for enhanced drug loading efficiency, improved bioavailability, and targeted delivery systems, reducing the non-specific cytotoxic effects characteristic of conventional chemotherapies. Furthermore, recent advances in nanotechnology have demonstrated encouraging results in specifically targeting CSCs, a key development considering the role of these cells in disease recurrence and resistance to treatment. Despite these breakthroughs, the clinical approval rates of nano-drugs have not kept pace with research advances, pointing to existing obstacles that must be addressed. In conclusion, nanotechnology presents a novel, powerful tool in the fight against cancer, particularly in targeting the elusive and treatment-resistant CSCs. This comprehensive review delves into the intricacies of nanotherapy, explicitly targeting cancer stem cells, their markers, and associated signaling pathways.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/adverse effects , Nanotechnology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism
6.
Hum Vaccin Immunother ; 19(2): 2220626, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37293893

ABSTRACT

High-risk Human Papillomaviruses (HPVs) and Epstein - Barr virus (EBV) are present and involved in several types of human carcinomas, including cervical and, head and neck cancers. Nevertheless, their presence and association in the pathogenesis of colorectal cancer is still nascent. The current study explored the association between the high-risk HPVs and EBV and tumor phenotype in colorectal cancers (CRCs) in the Qatari population. We found that high-risk HPVs and EBV are present in 69/100 and 21/100 cases, respectively. Additionally, 17% of the cases showed a copresence of high-risk HPVs and EBV, with a significant correlation only between the HPV45 subtype and EBV (p = .004). While the copresence did not significantly associate with clinicopathological characteristics, we identified that coinfection with more than two subtypes of HPV is a strong predictor of advanced stage CRC, and the confounding effect of the copresence of EBV in such cases strengthens this association. Our results indicate that high-risk HPVs and EBV can co-present in human CRCs in the Qatari population where they could plausibly play a specific role in human colorectal carcinogenesis. However, future studies are essential to confirm their copresence and synergistic role in developing CRCs.


Subject(s)
Colorectal Neoplasms , Epstein-Barr Virus Infections , Papillomavirus Infections , Female , Humans , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Incidence , Qatar , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Papillomaviridae , Colorectal Neoplasms/epidemiology
7.
J Transl Med ; 21(1): 235, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37004094

ABSTRACT

BACKGROUND: The mechanism of tumor immune escape and progression in colorectal cancer (CRC) is widely investigated in-vitro to help understand and identify agents that might play a crucial role in response to treatment and improve the overall survival of CRC patients. Several mechanisms of immune escape and tumor progression, including expression of stemness markers, inactivation of immunoregulatory genes by methylation, and epigenetic silencing, have been reported in CRC, indicating the potential of demethylating agents as anti-cancer drugs. Of these, a chemotherapeutic demethylating agent, Decitabine (DAC), has been reported to induce a dual effect on both DNA demethylation and histone changes leading to an increased expression of target biomarkers, thus making it an attractive anti-tumorigenic drug. METHODS: We compared the effect of DAC in primary 1076 Col and metastatic 1872 Col cell lines isolated and generated from patients' tumor tissues. Both cell lines were treated with DAC, and the expression of the NY-ESO-1 cancer-testis antigen, the PD-L1 immunoinhibitory marker, and the CD44, Nanog, KLF-4, CD133, MSI-1 stemness markers were analyzed using different molecular and immunological assays. RESULTS: DAC treatment significantly upregulated stemness markers in both primary 1076 Col and meta-static 1872 Col cell lines, although a lower effect occurred on the latter: CD44 (7.85 fold; ***p = 0.0001 vs. (4.19 fold; *p = 0.0120), Nanog (4.1 fold; ***p < 0.0001 vs.1.69 fold; ***p = 0.0008), KLF-4 (4.33 fold; ***p < 0.0001 vs.2.48 fold; ***p = 0.0005), CD133 (16.77 fold; ***p = 0.0003 vs.6.36 fold; *p = 0.0166), and MSI-1 (2.33 fold; ***p = 0.0003 vs.2.3 fold; ***p = 0.0004), respectively. Interestingly, in the metastatic 1872 Col cells treated with DAC, the expression of both PD-L1 and NY-ESO-1 was increased tenfold (*p = 0.0128) and fivefold (***p < 0.0001), respectively. CONCLUSIONS: We conclude that the upregulation of both stemness and immune checkpoint markers by DAC treatment on CRC cells might represent a mechanism of immune evasion. In addition, induction of NY-ESO-1 may represent an immuno-therapeutic option in metastatic CRC patients. Finally, the combination of DAC and anti-PD-1/anti-PD-L1 antibodies treatment should represent a potential therapeutic intervention for this group of patients.


Subject(s)
Antigens, Neoplasm , Colorectal Neoplasms , Male , Humans , Decitabine/pharmacology , Decitabine/therapeutic use , Antigens, Neoplasm/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Immunotherapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Cell Line, Tumor
8.
Pathogens ; 12(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36986346

ABSTRACT

High-risk human papillomaviruses (HPVs) are considered risk factors in the origin of several human malignancies, such as breast, cervical, head and neck, as well as colorectal cancers. However, there are no data reported on the HPV status in colorectal cancer in the State of Qatar. Therefore, we herein examined the presence of high-risk HPVs (16, 18, 31, 33, 35, 45, 51, 52, and 59), using polymerase chain reaction (PCR) in a cohort of 100 Qatari colorectal cancer patients, and their association with tumor phenotype. We found that high-risk HPV types 16, 18, 31, 35, 45, 51, 52, and 59 were present in 4, 36, 14, 5, 14, 6, 41, and 17% of our samples, respectively. Overall, 69 (69%) of the 100 samples were HPV positive; among these, 34/100 (34%) were positive for single HPV subtypes, while 35/100 (35%) of the samples were positive for two or more HPV subtypes. No significant association was noted between the presence of HPV and tumor grade, stage, or location. However, the presence of coinfection of HPV subtypes strongly correlated with advanced stage (stage 3 and 4) colorectal cancer, indicating that the copresence of more than one HPV subtype can significantly worsen the prognosis of colorectal cancer. The results from this study imply that coinfection with high-risk HPV subtypes is associated with the development of colorectal cancer in the Qatari population.

9.
Eur J Pharmacol ; 945: 175612, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36822455

ABSTRACT

Dysregulated epigenetic modifications are common in lung cancer but have been reversed using demethylating agent like 5-Aza-CdR. 5-Aza-CdR induces/upregulates the NY-ESO-1 antigen in lung cancer. Therefore, we investigated the molecular mechanisms accompanied with the epigenetic regulation of NY-ESO-1 in 5-Aza-CdR-treated NCI-H1975 cell line. We showed significant induction of the NY-ESO-1 protein (**p < 0.0097) using Cellular ELISA. Bisulfite-sequencing demonstrated 45.6% demethylation efficiency at the NY-ESO-1 gene promoter region and RT-qPCR analysis confirmed the significant induction of NY-ESO-1 at mRNA level (128-fold increase, *p < 0.050). We then investigated the mechanism by which 5-Aza-CdR inhibits cell proliferation in the NCI-H1975 cell line. Upregulation of the death receptors TRAIL (2.04-fold *p < 0.011) and FAS (2.1-fold *p < 0.011) indicate activation of the extrinsic apoptotic pathway. The upregulation of Voltage-dependent anion-selective channel protein 1 (1.9-fold), Major vault protein (1.8-fold), Bax (1.16-fold), and Cytochrome C (1.39-fold) indicate the activation of the intrinsic pathway. We also observed the differential expression of protein Complement C3 (3.3-fold), Destrin (-5.1-fold), Vimentin (-1.7-fold), Peroxiredoxin 4 (-1.6-fold), Fascin (-1.8-fold), Heme oxygenase-2 (-0.67-fold**p < 0.0055), Hsp27 (-0.57-fold**p < 0.004), and Hsp70 (-0.39-fold **p < 0.001), indicating reduced cell growth, cell migration, and metastasis. The upregulation of 40S ribosomal protein S9 (3-fold), 40S ribosomal protein S15 (4.2-fold), 40S ribosomal protein S18 (2.5-fold), and 60S ribosomal protein L22 (4.4-fold) implied the induction of translation machinery. These results reiterate the decisive role of 5-Aza-CdR in lung cancer treatment since it induces the epigenetic regulation of NY-ESO-1 antigen, inhibits cell proliferation, increases apoptosis, and decreases invasiveness.


Subject(s)
Epigenesis, Genetic , Lung Neoplasms , Humans , Decitabine/pharmacology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Membrane Proteins/metabolism , Azacitidine/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Apoptosis , Antibodies/metabolism , Cell Line, Tumor
10.
Front Immunol ; 14: 1061255, 2023.
Article in English | MEDLINE | ID: mdl-36817441

ABSTRACT

Introduction: The BNT162b2 mRNA-based vaccine has shown high efficacy in preventing COVID-19 infection but there are limited data on the types and persistence of the humoral and T cell responses to such a vaccine. Methods: Here, we dissect the vaccine-induced humoral and cellular responses in a cohort of six healthy recipients of two doses of this vaccine. Results and discussion: Overall, there was heterogeneity in the spike-specific humoral and cellular responses among vaccinated individuals. Interestingly, we demonstrated that anti-spike antibody levels detected by a novel simple automated assay (Jess) were strongly correlated (r=0.863, P<0.0001) with neutralizing activity; thus, providing a potential surrogate for neutralizing cell-based assays. The spike-specific T cell response was measured with a newly modified T-spot assay in which the high-homology peptide-sequences cross-reactive with other coronaviruses were removed. This response was induced in 4/6 participants after the first dose, and all six participants after the second dose, and remained detectable in 4/6 participants five months post-vaccination. We have also shown for the first time, that BNT162b2 vaccine enhanced T cell responses also against known human common viruses. In addition, we demonstrated the efficacy of a rapid ex-vivo T cell expansion protocol for spike-specific T cell expansion to be potentially used for adoptive-cell therapy in severe COVID-19, immunocompromised individuals, and other high-risk groups. There was a 9 to 13.7-fold increase in the number of expanded T cells with a significant increase of anti-spike specific response showing higher frequencies of both activation and cytotoxic markers. Interestingly, effector memory T cells were dominant in all four participants' CD8+ expanded memory T cells; CD4+ T cells were dominated by effector memory in 2/4 participants and by central memory in the remaining two participants. Moreover, we found that high frequencies of CD4+ terminally differentiated memory T cells were associated with a greater reduction of spike-specific activated CD4+ T cells. Finally, we showed that participants who had a CD4+ central memory T cell dominance expressed a high CD69 activation marker in the CD4+ activated T cells.


Subject(s)
COVID-19 , Immunotherapy, Adoptive , Humans , BNT162 Vaccine , CD4-Positive T-Lymphocytes , Pilot Projects , T-Lymphocytes/immunology , Immunologic Memory
11.
J Control Release ; 353: 842-849, 2023 01.
Article in English | MEDLINE | ID: mdl-36529384

ABSTRACT

Polydopamine (PDA) is a biopolymer with unique physicochemical properties, including free-radical scavenging, high photothermal conversion efficiency, biocompatibility, biodegradability, excellent fluorescent and theranostic capacity due to their abundant surface chemistry. Thus, PDA is used for a myriad of applications including drug delivery, biosensing, imaging and cancer therapy. Recent reports present a new functionality of PDA as a coating nanomaterial, with major implications in mucosal drug delivery applications, particularly muco-adhesion and muco-penetration. However, this application has received minimal traction in the literature. In this review, we present the physicochemical and functional properties of PDA and highlight its key biomedical applications, especially in cancer therapy. A detailed presentation of the role of PDA as a promising coating material for nanoparticulate carriers intended for mucosal delivery forms the core aspect of the review. Finally, a reflection on key considerations and challenges in the utilizing PDA for mucosal drug delivery, along with the possibilities of translation to clinical studies is expounded.


Subject(s)
Nanostructures , Neoplasms , Humans , Drug Delivery Systems , Precision Medicine , Neoplasms/drug therapy
12.
Biomed Pharmacother ; 158: 114093, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36495664

ABSTRACT

Vitamin C is an important nutrient implicated in different physiological functions in humans. Despite its important biological functions, therapeutic applications of vitamin C are rare and its use is further impacted by low chemical stability. Several nano-encapsulation techniques have been described in the literature and yet, there are only a handful of clinical investigations dedicated to unlocking the therapeutic applications of nano-encapsulated vitamin C. Clearly, further investigations are warranted in order to affirm the promising clinical potential of nano-encapsulated vitamin C. In this review, we describe the mechanisms of vitamin C activity as a modulator of crucial therapeutic uses in biological systems. We look at key factors affecting the chemical stability of vitamin C alone and in nano-encapsulated and explore pre-clinical and clinical evidence on current vitamin C nano-formulations along with their therapeutic applications. Finally, we critically appraise the gaps and opportunities prevailing in nano-vitamin C research and its potential translation towards relevant clinical outcomes.


Subject(s)
Ascorbic Acid , Humans , Ascorbic Acid/therapeutic use
13.
Pathogens ; 11(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36422631

ABSTRACT

The human papillomavirus (HPV) is a non-enveloped double-stranded DNA virus capable of infecting skin and mucosa epithelial cells. Commonly, HPV infection is associated with sexually transmitted diseases and is considered the leading cause of cervical cancer and other carcinomas of the anogenital tract. However, several studies reported their involvement in cancers of non-sexual regions, including colorectal, head and neck, and breast cancers. There are several studies from the Middle East and North Africa (MENA) regions on the potential association between high-risk HPVs and cancer; nevertheless, there are limited studies that address the significance of HPV vaccination as a potential guard against these cancers. In the current review, we present a comprehensive description of the current HPV-associated cancers prevalence rates in the MENA region, demonstrating their steady increase with time, especially in African regions. Moreover, we discuss the potential impact of vaccination against HPV infections and its outcome on human health in this region.

14.
J Exp Clin Cancer Res ; 41(1): 99, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35292091

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers worldwide. The diagnosis, prognosis and therapeutic monitoring of CRC depends largely on tissue biopsy. However, due to tumor heterogeneity and limitations such as invasiveness, high cost and limited applicability in longitudinal monitoring, liquid biopsy has gathered immense attention in CRC. Liquid biopsy has several advantages over tissue biopsy including ease of sampling, effective monitoring, and longitudinal assessment of treatment dynamics. Furthermore, the importance of liquid biopsy is signified by approval of several liquid biopsy assays by regulatory bodies indicating the powerful approach of liquid biopsy for comprehensive CRC screening, diagnostic and prognostics. Several liquid biopsy biomarkers such as novel components of the microbiome, non-coding RNAs, extracellular vesicles and circulating tumor DNA are extensively being researched for their role in CRC management. Majority of these components have shown promising results on their clinical application in CRC including early detection, observe tumor heterogeneity for treatment and response, prediction of metastases and relapse and detection of minimal residual disease. Therefore, in this review, we aim to provide updated information on various novel liquid biopsy markers such as a) oral microbiota related bacterial network b) gut microbiome-associated serum metabolites c) PIWI-interacting RNAs (piRNAs), microRNA(miRNAs), Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and d) circulating tumor DNAs (ctDNA) and circulating tumor cells (CTC) for their role in disease diagnosis, prognosis, treatment monitoring and their applicability for personalized management of CRC.


Subject(s)
Biomarkers, Tumor/metabolism , Colorectal Neoplasms/surgery , Liquid Biopsy/methods , Neoplastic Cells, Circulating/metabolism , Colorectal Neoplasms/pathology , Disease Progression , Early Detection of Cancer , Humans , Prognosis
15.
Ann Med ; 54(1): 524-540, 2022 12.
Article in English | MEDLINE | ID: mdl-35132910

ABSTRACT

The emergence of novel and evolving variants of SARS-CoV-2 has fostered the need for change in the form of newer and more adaptive diagnostic methods for the detection of SARS-CoV-2 infections. On the other hand, developing rapid and sensitive diagnostic technologies is now more challenging due to emerging variants and varying symptoms exhibited among the infected individuals. In addition to this, vaccines remain the major mainstay of prevention and protection against infection. Novel vaccines and drugs are constantly being developed to unleash an immune response for the robust targeting of SARS-CoV-2 and its associated variants. In this review, we provide an updated perspective on the current challenges posed by the emergence of novel SARS-CoV-2 mutants/variants and the evolution of diagnostic techniques to enable their detection. In addition, we also discuss the development, formulation, working mechanisms, advantages, and drawbacks of some of the most used vaccines/therapeutic drugs and their subsequent immunological impact.Key messageThe emergence of novel variants of the SARS-CoV-2 in the past couple of months, highlights one of the primary challenges in the diagnostics, treatment, as well as vaccine development against the virus.Advancements in SARS-CoV-2 detection include nucleic acid based, antigen and immuno- assay-based and antibody-based detection methodologies for efficient, robust, and quick testing; while advancements in COVID-19 preventive and therapeutic strategies include novel antiviral and immunomodulatory drugs and SARS-CoV-2 targeted vaccines.The varied COVID-19 vaccine platforms and the immune responses induced by each one of them as well as their ability to battle post-vaccination infections have all been discussed in this review.


Subject(s)
COVID-19 , Vaccines , COVID-19 Testing , COVID-19 Vaccines , Humans , SARS-CoV-2
16.
Biomed Pharmacother ; 146: 112553, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34923342

ABSTRACT

Vitamin C also known as L-ascorbic acid is a nutrient naturally occurring in many fruits and vegetables and widely known for its potent antioxidant activity. Several studies have highlighted the importance of using high dose vitamin C as an adjuvant anti-cancer therapy. Interestingly, it has been shown that vitamin C is able to modulate the anti-cancer immune response and to help to overcome the resistance to immune checkpoints blockade (ICB) drugs such as cytotoxic T-lymphocyte antigen 4 (CLTA-4) and programmed cell death ligand 1 (PD-L1/PD-1) inhibitors. Indeed, it was reported that vitamin C regulates several mechanisms developed by cancer cells to escape T cells immune response and resist ICB. Understanding the role of vitamin C in the anti-tumor immune response will pave the way to the development of novel combination therapies that would enhance the response of cancer patients to ICB immunotherapy. In this review, we discuss the effect of vitamin C on the immune system and its potential role in empowering cancer immunotherapy through its pro-oxidant potential, its ability to modulate epigenetic factors and its capacity to regulate the expression of different cytokines involved in the immune response.


Subject(s)
Antineoplastic Agents/pharmacology , Ascorbic Acid/pharmacology , Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ascorbic Acid/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cytokines/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Epigenesis, Genetic/drug effects , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/physiopathology , Oxidative Stress/drug effects , T-Lymphocytes/drug effects , Tumor Microenvironment/drug effects
17.
Tumour Biol ; 43(1): 177-196, 2021.
Article in English | MEDLINE | ID: mdl-34420993

ABSTRACT

Pneumonia cases of unknown etiology in Wuhan, Hubei province, China were reported to the World Health Organization on 31st of December 2019. Later the pathogen was reported to be a novel coronavirus designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Corona virus disease 2019 (COVID-19). The disease outspread was followed by WHO declaration of COVID-19 pandemic as a "Public Health Emergency of International Concern". SARS-CoV-2 is a novel pathogenic beta coronavirus that infects humans causing severe respiratory illness. However, multifarious factors can contribute to the susceptibility to COVID-19 related morbidity and mortality such as age, gender, and underlying comorbidities. Infection initiates when viral particles bind to the host cell surface receptors where SARS-CoV-2 spike glycoprotein subunit 1 binds to the Angiotensin Converting Enzyme 2 (ACE2). It is of importance to mention that SARS-CoV and SARS-CoV-2 viruses' mediate entry into the host cells via ACE2 receptor which might be correlated with the structural similarity of spike glycoprotein subunit 1 of both SARS viruses. However, the structural binding differs, whereas ACE2 receptor binding affinity with SARS-CoV-2 is 4 folds higher than that with SARS-CoV. Moreover, amino acids sequence divergence between the two S glycoproteins might be responsible for differential modulations of the specific immune response to both viruses. Identification of different aspects such as binding affinity, differential antigenic profiles of S-glycoproteins, and ACE2 mutations might influence the investigation of potential therapeutic strategies targeting SARS-CoV-2/ACE2 binding interface. In this review, we aim to elaborate on the expression of hACE2 receptor protein and its binding with SARS-CoV-2 S1 subunit, the possible immunogenic sequences of spike protein, effect of ACE 2 polymorphism on viral binding, and infectivity/susceptibility to disease. Furthermore, targeting of hACE2 receptor binding with SARS-CoV-2 S1 subunit via various mechanisms will be discussed to understand its role in therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , COVID-19/metabolism , COVID-19/virology , Humans
18.
Cell Immunol ; 367: 104408, 2021 09.
Article in English | MEDLINE | ID: mdl-34246086

ABSTRACT

The p21 activated kinases (PAKs) are known to play a role in the regulation of cell morphology and functions. Among the various members of PAKs family, only the PAK4 protein has been shown to be overexpressed in cancer cells and its upregulation was associated with tumor development. Indeed, several studies have shown that PAK4 overexpression is implicated in carcinogenesis by different mechanisms including promotion of cell proliferation, invasion and migration, protection of cells from apoptosis, stimulation of the tumor-specific anchorage-independent cell growth and regulation of the cytoskeletal organisation and adhesion. Moreover, high PAK4 protein levels have been observed in several solid tumors and have been shown able to enhance cancer cell resistance to many treatments especially chemotherapy. Interestingly, it has been recently demonstrated that PAK4 downregulation can inhibit the PD-1/PD-L1 immune regulatory pathway. Taken together, these findings not only implicate PAK4 in oncogenic transformation and in prediction of tumor response to treatment but also suggest its role as an attractive target for immunotherapy. In the current review we will summarize the different mechanisms of PAK4 implication in tumor development, describe its role as a regulator of the immune response and as a potential novel target for cancer immunotherapy.


Subject(s)
Biomarkers, Tumor/metabolism , Immunotherapy/methods , Neoplasms/therapy , p21-Activated Kinases/metabolism , Animals , B7-H1 Antigen/metabolism , Humans , Immunomodulation , Molecular Targeted Therapy , Neoplasms/immunology , Programmed Cell Death 1 Receptor/metabolism , p21-Activated Kinases/genetics
19.
Pathogens ; 9(4)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32325943

ABSTRACT

Human papillomaviruses (HPVs) and the Epstein-Barr virus (EBV) are the most common oncoviruses, contributing to approximately 10%-15% of all malignancies. Oncoproteins of high-risk HPVs (E5 and E6/E7), as well as EBV (LMP1, LMP2A and EBNA1), play a principal role in the onset and progression of several human carcinomas, including head and neck, cervical and colorectal. Oncoproteins of high-risk HPVs and EBV can cooperate to initiate and/or enhance epithelial-mesenchymal transition (EMT) events, which represents one of the hallmarks of cancer progression and metastasis. Although the role of these oncoviruses in several cancers is well established, their role in the pathogenesis of colorectal cancer is still nascent. This review presents an overview of the most recent advances related to the presence and role of high-risk HPVs and EBV in colorectal cancer, with an emphasis on their cooperation in colorectal carcinogenesis.

20.
Hum Vaccin Immunother ; 16(10): 2403-2407, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32186955

ABSTRACT

We recently performed two studies exploring the presence of Epstein-Barr virus (EBV) and high-risk human papillomaviruses (HPVs) types 16, 18, 31, 33 and 35 in human colorectal cancers from the Syrian population. Herein, we report that EBV and high-risk HPVs are co-present in colorectal cancers from Syria. We reveal that 17 (~17%) of 102 cancer samples are positive for both EBV and high-risk HPVs and their co-presence is associated with high/intermediate grade invasive carcinomas. These data suggest that EBV and high-risk HPVs are co-present in human colorectal cancers where they might cooperate on the initiation and/or progression of these cancers. Thus, we believe that future studies are necessary to confirm the co-presence of these oncoviruses and their cooperative role in human colorectal carcinogenesis.


Subject(s)
Alphapapillomavirus , Colorectal Neoplasms , Epstein-Barr Virus Infections , Papillomavirus Infections , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Herpesvirus 4, Human , Humans , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Syria/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...