Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microb Pathog ; 195: 106837, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39103128

ABSTRACT

Microbial resistance to drugs continues to be a global public health issue that demands substantial investment in research and development of new antimicrobial agents. Essential oils (EO) have demonstrated satisfactory and safe antimicrobial action, being used in pharmaceutical, cosmetic, and food formulations. In order to improve solubility, availability, and biological action, EO have been converted into nanoemulsions (NE). This review identified scientific evidence corroborating the antimicrobial action of nanoemulsions of essential oils (NEEO) against antibiotic-resistant pathogens. Using integrative review methodology, eleven scientific articles evaluating the antibacterial or antifungal assessment of NEEO were selected. The synthesis of evidence indicates that NEEO are effective in combating multidrug-resistant microorganisms and in the formation of their biofilms. Factors such as NE droplet size, chemical composition of essential oils, and the association of NE with antibiotics are discussed. Furthermore, NEEO showed satisfactory results in vitro and in vivo evaluations against resistant clinical isolates, making them promising for the development of new antimicrobial and antivirulence drugs.


Subject(s)
Bacteria , Biofilms , Emulsions , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Emulsions/chemistry , Emulsions/pharmacology , Biofilms/drug effects , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Humans , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Fungi/drug effects , Nanoparticles/chemistry , Animals
2.
Int J Microbiol ; 2023: 4026440, 2023.
Article in English | MEDLINE | ID: mdl-38144901

ABSTRACT

Punica granatum Linn has been known for its nutritional and medicinal value since ancient times and is used in the treatment of various pathologies owing to its antibacterial properties. This review reports the results of the most recent studies on the antibacterial effects of P. granatum and its isolated compounds on bacteria of clinical interest. A search in the PubMed, Scopus, Science Direct, and Science Citation Index Expanded (Web of Science) databases was performed, which included articles that evaluated the antibacterial activity of P. granatum extracts and excluded articles that analyzed other microorganisms or nonpathogenic bacteria, as well as theses, dissertations, duplicate articles, and those not fully available. The literature suggests that P. granatum extracts can act on bacteria, such as methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In addition, fruit peel was the most commonly used pharmacogen and methanol, ethanol, and water were the most common solvents for the extraction of bioactive compounds. The antibacterial potential of the methanolic extract of pomegranate peel could be attributed to the presence of active compounds, such as 5-hydroxymethylfurfural, punicic acid, gallic acid, and punicalagin. Thus, there is evidence that these plant extracts, having high polyphenol content, can disrupt the bacterial plasma membrane and inhibit the action of proteins related to antimicrobial resistance. P. granatum shows antibacterial activity against Gram-positive and Gram-negative bacteria, with great potential against multidrug-resistant strains. Further research is needed to clarify the mechanism of action related to this biological activity and investigate the isolated substances that may be responsible for the antibacterial effects.

SELECTION OF CITATIONS
SEARCH DETAIL