Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Res ; 101(2): 256-262, 2023 02.
Article in English | MEDLINE | ID: mdl-36349730

ABSTRACT

Electrical deep brain stimulation (DBS) is now a routine treatment option for patients suffering from medically refractory epilepsy. DBS of the anterior nucleus of the thalamus (ANT) has proven to be effective but, despite its success, few patients experience complete cessation of seizure activity. However, improving the therapy is challenging because the mechanism underlying its action remains largely unknown. One angle on improving the effectiveness of ANT stimulation is to better understand the various anatomic regions that send projections to and through this area. Here, the authors utilized a connectomic atlas of the mouse brain to better understand the regions projecting to the ANT and were particularly interested by the presence of robust cholinergic projections from the laterodorsal tegmentum (LDT). A subsequent review of the literature resulted in limited studies, which presented convincing evidence supporting this region's role in seizure control present in acute rodent models of epilepsy. It is thus the purpose of this paper to encourage further research into the role of the LDT on seizure mitigation, with mechanistic effects likely stemming from its cholinergic projections to the ANT. While previous studies have laid a firm foundation supporting the role of this region in modulation of seizure activity, modern scientific methodology has yet to be applied to further elucidate the mechanisms and potential benefits associated with LDT stimulation in the epileptic population.


Subject(s)
Cholinergic Agents , Seizures , Animals , Mice , Seizures/therapy
2.
Methods Mol Biol ; 2525: 333-346, 2022.
Article in English | MEDLINE | ID: mdl-35836081

ABSTRACT

Manipulation of neural activity in genetically predefined populations of neurons through genetic techniques is an essential tool in the field of neuroscience as well as a potential avenue in treating a vast assortment of neurological and psychiatric diseases. Here, we describe an emerging methodology of molecular neuromodulation termed bioluminescence-optogenetics (BL-OG) where BL is harnessed to activate bacterial light-driven channels and pumps expressed in neurons to control their activity. BL-OG is realized through opsin-luciferase fusion proteins called luminopsins (LMOs). In this chapter, we will provide a practical guide for applying BL-OG and LMOs in vitro using a cell line and primary cells in culture. In the following chapter, we will turn our focus towards BL-OG applications in ex vivo and in vivo rodent models of the nervous system.


Subject(s)
Light , Optogenetics , Luciferases/genetics , Luciferases/metabolism , Neurons/metabolism , Opsins/genetics , Opsins/metabolism , Optogenetics/methods
3.
Methods Mol Biol ; 2525: 347-363, 2022.
Article in English | MEDLINE | ID: mdl-35836082

ABSTRACT

In the preceding chapter, we introduced bioluminescence-optogenetics (BL-OG) and luminopsin fusion proteins (LMOs), an emerging method of molecular neuromodulation. In addition to reviewing the fundamental principles of BL-OG, we provided a discussion of its application in vitro, including with cell lines and primary cells in culture in vitro. BL-OG is mediated by an easily diffusible molecule, luciferin, and when applied systemically in rodents, the substrate can spread throughout the body, including the brain, achieving powerful molecular neuromodulation with convenience even in awake and behaving animals. In this chapter, we provide a practical guide for BL-OG and LMO applications in rodent models of the nervous system, both ex vivo and in vivo.


Subject(s)
Luminescent Measurements , Optogenetics , Animals , Brain/metabolism , Luciferases/genetics , Luciferases/metabolism , Rodentia/metabolism
4.
Epilepsia ; 63(9): 2192-2213, 2022 09.
Article in English | MEDLINE | ID: mdl-35698897

ABSTRACT

Electrical brain stimulation has become an essential treatment option for more than one third of epilepsy patients who are resistant to pharmacological therapy and are not candidates for surgical resection. However, currently approved stimulation paradigms achieve only moderate success, on average providing approximately 75% reduction in seizure frequency and extended periods of seizure freedom in nearly 20% of patients. Outcomes from electrical stimulation may be improved through the identification of novel anatomical targets, particularly those with significant anatomical and functional connectivity to the epileptogenic zone. Multiple studies have investigated the medial septal nucleus (i.e., medial septum) as such a target for the treatment of mesial temporal lobe epilepsy. The medial septum is a small midline nucleus that provides a critical functional role in modulating the hippocampal theta rhythm, a 4-7-Hz electrophysiological oscillation mechanistically associated with memory and higher order cognition in both rodents and humans. Elevated theta oscillations are thought to represent a seizure-resistant network activity state, suggesting that electrical neuromodulation of the medial septum and restoration of theta-rhythmic physiology may not only reduce seizure frequency, but also restore cognitive comorbidities associated with mesial temporal lobe epilepsy. Here, we review the anatomical and physiological function of the septohippocampal network, evidence for seizure-resistant effects of the theta rhythm, and the results of stimulation experiments across both rodent and human studies, to argue that deep brain stimulation of the medial septum holds potential to provide an effective neuromodulation treatment for mesial temporal lobe epilepsy. We conclude by discussing the considerations necessary for further evaluating this treatment paradigm with a clinical trial.


Subject(s)
Deep Brain Stimulation , Epilepsy, Temporal Lobe , Deep Brain Stimulation/methods , Epilepsy, Temporal Lobe/therapy , Hippocampus , Humans , Seizures , Theta Rhythm/physiology
5.
Epilepsy Res ; 180: 106863, 2022 02.
Article in English | MEDLINE | ID: mdl-35114430

ABSTRACT

Unilateral intrahippocampal injection of kainic acid is used as a model of medial temporal lobe epilepsy and provides a platform to study the mechanisms of epilepsy. Here, we used an AAV-9 EYFP-tagged viral vector as an anterograde tracer, injected into the dorsal and ventral hippocampus after kainic acid injection, to map out the efferent hippocampal projections after the development of spontaneous seizures in this model. The purpose of the study was to identify the extent of changes in hippocampal efferent system in several brain regions that receive significant inputs from the hippocampus. Loss of efferent hippocampal fibers was greatest in the retrosplenial cortex where neuronal loss was also observed. Loss of fibers was also observed in the fornix without any specific effect in the lateral mammillary nuclei. Although expected, these observations provide further evidence of the broader network effects as a result of hippocampal cell loss.


Subject(s)
Epilepsy, Temporal Lobe , Kainic Acid , Animals , Disease Models, Animal , Epilepsy, Temporal Lobe/chemically induced , Hippocampus , Kainic Acid/toxicity , Mice , Seizures/chemically induced
6.
J Neural Eng ; 18(1)2021 02 23.
Article in English | MEDLINE | ID: mdl-33271520

ABSTRACT

Objective.Neural modulation is a fundamental tool for understanding and treating neurological and psychiatric diseases. However, due to the high-dimensional space, subject-specific responses, and variability within each subject, it is a major challenge to select the stimulation parameters that have the desired effect. Data-driven optimization provides a range of different algorithms and tools for addressing this challenge, but each of these algorithms has specific strengths and limitations, and therefore must be carefully designed for a given neural modulation problem. Here we present a framework for designing data-driven optimization algorithms for neural modulation.Approach.We develop this framework using an optogenetic medial septum stimulation model, where the goal is to find the stimulation parameters that modulate hippocampal gamma power to a desired value. This framework proceeds in four steps: (a) collecting stimulation data, (b) creating high-throughput simulation models, (c) prototyping a range of different data-driven optimization algorithms and evaluating their performance, and (d) deploying the best performing algorithmin vivo. Main results.Following this framework, we prototype and design an algorithm specifically for finding the medial septum optogenetic stimulation parameters that maximize hippocampal gamma power. Building on this, we then change our objective function to find the stimulation parameters that modulate gamma to a specific setpoint, use the framework to understand and anticipate the results before deployingin vivo. Significance.We show that this framework can be used to design an effective optimization solution for a specific neural modulation problem, and discuss how it can potentially be applied beyond the optogenetic medial septum stimulation model.


Subject(s)
Hippocampus , Optogenetics , Algorithms , Hippocampus/physiology , Optogenetics/methods
7.
J Neurosci Res ; 98(3): 422-436, 2020 03.
Article in English | MEDLINE | ID: mdl-30957296

ABSTRACT

Although molecular tools for controlling neuronal activity by light have vastly expanded, there are still unmet needs which require development and refinement. For example, light delivery into the brain is still a major practical challenge that hinders potential translation of optogenetics in human patients. In addition, it would be advantageous to manipulate neuronal activity acutely and precisely as well as chronically and non-invasively, using the same genetic construct in animal models. We have previously addressed these challenges by employing bioluminescence and have created a new line of opto-chemogenetic probes termed luminopsins by fusing light-sensing opsins with light-emitting luciferases. In this report, we incorporated Chlamydomonas channelrhodopsin 2 with step-function mutations as the opsin moiety in the new luminopsin fusion protein termed step-function luminopsin (SFLMO). Bioluminescence-induced photocurrent lasted longer than the bioluminescence signal due to very slow deactivation of the mutated channel. In addition, bioluminescence was able to activate most of the channels on the cell surface due to the extremely high light sensitivity of the channel. This efficient channel activation was partly mediated by radiationless bioluminescence resonance energy transfer due to the proximity of luciferase and opsin. To test the utility of SFLMOs in vivo, we transduced the substantia nigra unilaterally via a viral vector in male rats. Injection of the luciferase substrate as well as conventional photostimulation via fiber optics elicited circling behaviors. Thus, SFLMOs expand the current approaches for manipulation of neuronal activity in the brain and add more versatility and practicality to optogenetics in freely behaving animals.


Subject(s)
Channelrhodopsins , Luciferases , Neurons/physiology , Optogenetics/methods , Animals , Behavior, Animal/physiology , Channelrhodopsins/genetics , Channelrhodopsins/physiology , Female , HEK293 Cells , Humans , Luciferases/genetics , Luciferases/physiology , Luminescent Proteins , Male , Membrane Potentials , Primary Cell Culture , Rats, Sprague-Dawley , Substantia Nigra/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...