Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 17: 1134012, 2023.
Article in English | MEDLINE | ID: mdl-37497043

ABSTRACT

Whole-brain functional connectivity (FC) measured with functional MRI (fMRI) evolves over time in meaningful ways at temporal scales going from years (e.g., development) to seconds [e.g., within-scan time-varying FC (tvFC)]. Yet, our ability to explore tvFC is severely constrained by its large dimensionality (several thousands). To overcome this difficulty, researchers often seek to generate low dimensional representations (e.g., 2D and 3D scatter plots) hoping those will retain important aspects of the data (e.g., relationships to behavior and disease progression). Limited prior empirical work suggests that manifold learning techniques (MLTs)-namely those seeking to infer a low dimensional non-linear surface (i.e., the manifold) where most of the data lies-are good candidates for accomplishing this task. Here we explore this possibility in detail. First, we discuss why one should expect tvFC data to lie on a low dimensional manifold. Second, we estimate what is the intrinsic dimension (ID; i.e., minimum number of latent dimensions) of tvFC data manifolds. Third, we describe the inner workings of three state-of-the-art MLTs: Laplacian Eigenmaps (LEs), T-distributed Stochastic Neighbor Embedding (T-SNE), and Uniform Manifold Approximation and Projection (UMAP). For each method, we empirically evaluate its ability to generate neuro-biologically meaningful representations of tvFC data, as well as their robustness against hyper-parameter selection. Our results show that tvFC data has an ID that ranges between 4 and 26, and that ID varies significantly between rest and task states. We also show how all three methods can effectively capture subject identity and task being performed: UMAP and T-SNE can capture these two levels of detail concurrently, but LE could only capture one at a time. We observed substantial variability in embedding quality across MLTs, and within-MLT as a function of hyper-parameter selection. To help alleviate this issue, we provide heuristics that can inform future studies. Finally, we also demonstrate the importance of feature normalization when combining data across subjects and the role that temporal autocorrelation plays in the application of MLTs to tvFC data. Overall, we conclude that while MLTs can be useful to generate summary views of labeled tvFC data, their application to unlabeled data such as resting-state remains challenging.

2.
Neuroimage ; 259: 119424, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35781079

ABSTRACT

Wakefulness levels modulate estimates of functional connectivity (FC), and, if unaccounted for, can become a substantial confound in resting-state fMRI. Unfortunately, wakefulness is rarely monitored due to the need for additional concurrent recordings (e.g., eye tracking, EEG). Recent work has shown that strong fluctuations around 0.05Hz, hypothesized to be CSF inflow, appear in the fourth ventricle (FV) when subjects fall asleep, and that they correlate significantly with the global signal. The analysis of these fluctuations could provide an easy way to evaluate wakefulness in fMRI-only data and improve our understanding of FC during sleep. Here we evaluate this possibility using the 7T resting-state sample from the Human Connectome Project (HCP). Our results replicate the observation that fourth ventricle ultra-slow fluctuations (∼0.05Hz) with inflow-like characteristics (decreasing in intensity for successive slices) are present in scans during which subjects did not comply with instructions to keep their eyes open (i.e., drowsy scans). This is true despite the HCP data not being optimized for the detection of inflow-like effects. In addition, time-locked BOLD fluctuations of the same frequency could be detected in large portions of grey matter with a wide range of temporal delays and contribute in significant ways to our understanding of how FC changes during sleep. First, these ultra-slow fluctuations explain half of the increase in global signal that occurs during descent into sleep. Similarly, global shifts in FC between awake and sleep states are driven by changes in this slow frequency band. Second, they can influence estimates of inter-regional FC. For example, disconnection between frontal and posterior components of the Defulat Mode Network (DMN) typically reported during sleep were only detectable after regression of these ultra-slow fluctuations. Finally, we report that the temporal evolution of the power spectrum of these ultra-slow FV fluctuations can help us reproduce sample-level sleep patterns (e.g., a substantial number of subjects descending into sleep 3 minutes following scanning onset), partially rank scans according to overall drowsiness levels, and predict individual segments of elevated drowsiness (at 60 seconds resolution) with 71% accuracy.


Subject(s)
Magnetic Resonance Imaging , Wakefulness , Brain , Electroencephalography/methods , Fourth Ventricle , Humans , Magnetic Resonance Imaging/methods , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL
...