Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(15): 4142-4150, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38593451

ABSTRACT

Charge-transfer (CT) excited states play an important role in many biological processes. However, many computational approaches often inadequately address the equilibration effects of nuclear and environmental degrees of freedom on these states. One prominent example of systems in which CT states are of utmost importance is reaction centers (RC) in photosystems. Here we use a multiscale approach combined with time-dependent density functional theory to explore the lowest CT excited state of the special pair PD1-PD2 in the Photosystem II-RC of a cyanobacterium. We find that the nonequilibrium CT excited state resides near the Soret band, making an exciton the lowest-energy excited state. However, accounting for nuclear and state-specific dielectric equilibration along the CT potential energy surface (PES), the CT state PD1--PD2+ stabilizes energetically below the excitonic state. This underscores the crucial role of state-specific solvation in mapping the PES of CT states, as demonstrated in a simplified dimer model.

2.
J Phys Chem Lett ; 15(1): 1-8, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38126721

ABSTRACT

Zinc oxide (ZnO) is a wide bandgap prototypical n-type semiconductor due to the presence of intrinsic oxygen vacancies (VO). The VO can readily transfer to the most energetically favorable +2 charged VO (VO2+) by losing two electrons mediated by the metastable VO1+ defect. Nevertheless, the influence of charged VO on the charge dynamics in ZnO and the underlying mechanisms remain elusive. By performing nonadiabatic molecular dynamics simulations of the charge trapping and recombination processes, we show that both VO1+ and VO2+ slow down the nonradiative electron-hole recombination via assisted defect states and, thus, extending charge carrier lifetime compared to pristine ZnO. Our study contributes to identifying the different recombination pathways that take place in VO1+ and VO2+ of n-type ZnO systems, providing useful guidance for designing high-performance ZnO-based devices.

3.
J Phys Chem Lett ; 14(45): 10145-10150, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37924328

ABSTRACT

Curved aromatic molecules are attractive electronic materials, where an additional internal strain uniquely modifies their structure, aromaticity, dynamics, and optical properties. Helicenes are examples of such twisted conjugated systems. Herein, we analyze the photoinduced dynamics in different stereoisomers of a hexapole helicene by using nonadiabatic excited-state molecular dynamics simulations. We explore how changes in symmetry and structural distortion modulate the intramolecular energy redistribution. We find that distinct helical assembly leads to different rigid distorted structures that in turn impact the nonradiative energy relaxation and ultimately formation of the self-trapped exciton. Subsequently, the value of the twisting angles relative to the central triphenylene core structure controls the global molecular aromaticity and electronic localization during the internal conversion process. Our work sheds light on how the future synthesis of novel curved aromatic compounds can be directed to attain specific desired electronic properties through the modulation of their twisted aromaticity.

4.
J Chem Theory Comput ; 19(16): 5356-5368, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37506288

ABSTRACT

We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.0 incorporates new implementations of two hybrid quantum-classical dynamics methods, namely, Ehrenfest dynamics (EHR) and the Ab-Initio Multiple Cloning sampling technique for Multiconfigurational Ehrenfest quantum dynamics (MCE-AIMC or simply AIMC), which are alternative options to the previously implemented trajectory surface hopping (TSH) method. To illustrate these methodologies, we outline a direct comparison of these three hybrid quantum-classical dynamics methods as implemented in the same NEXMD framework, discussing their weaknesses and strengths, using the modeled photodynamics of a polyphenylene ethylene dendrimer building block as a representative example. We also describe the expanded normal-mode analysis and constraints for both the ground and excited states, newly implemented in the NEXMD v2.0 framework, which allow for a deeper analysis of the main vibrational motions involved in vibronic dynamics. Overall, NEXMD v2.0 expands the range of applications of NEXMD to a larger variety of multichromophore organic molecules and photophysical processes involving quantum coherences and persistent couplings between electronic excited states and nuclear velocity.

5.
Phys Chem Chem Phys ; 25(17): 12097-12106, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37133823

ABSTRACT

Organic dendrimers with π conjugated systems are capable of capturing solar energy as a renewable source for human use. Nonetheless, further study regarding the relationship between the structure and the energy transfer mechanism in these types of molecules is still necessary. In this work, nonadiabatic excited state molecular dynamics (NEXMD) were carried out to study the intra- and inter-branch exciton migration in two tetra-branched dendrimers, C(dSSB)4 and Ad(BuSSB)4, which differ in their respective carbon and adamantane core. Both systems undergo a ladder decay mechanism between excited states, with back-and-forth transitions between S1 and S2. Despite presenting very similar absorption-emission spectra, differences in the photoinduced energy relaxation are observed. The size of the core impacts the inter-branch energy exchange and transient exciton localization/delocalization, which ultimately condition the relative energy relaxation rates, being faster in Ad(BuSSB)4 with respect to C(dSSB)4. Nevertheless, the photoinduced processes lead to a progressive final exciton-self-trapping in one of the branches of both dendrimers, which is a desirable feature in organic photovoltaic applications. Our results can inspire the design of more efficient dendrimers with the desired magnitude of inter-branch exciton exchange and localization/delocalization according to changes in their core.

6.
J Phys Chem Lett ; 14(20): 4673-4681, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37167537

ABSTRACT

Photoinduced intramolecular energy transfers in multichromophoric molecules involve nonadiabatic vibronic channels that act as energy transfer funnels. They commonly take place through specific directions of motion dictated by the nonadiabatic coupling vectors. Vibrational funnels may support persistent coherences between electronic states and sometimes delineate the presence of minor alternative energy transfer pathways. The ultimate confirmation of their role on the interchromophoric energy transfer can be achieved by performing nonadiabatic excited-state molecular dynamics simulations by selectively freezing the nuclear motions in question. Our results point out this strategy as a useful tool to identify and evaluate the impact of these vibrational funnels on the energy transfer processes and guide the in silico design of materials with tunable properties and enhanced functionalities. Our work encourages applications of this methodology to different chemical and biochemical processes such as reactive scattering and protein conformational changes, to name a few.

7.
Chem Sci ; 14(11): 2971-2982, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36937575

ABSTRACT

Understanding conical intersection (CI) dynamics and subsequent conformational changes is key for exploring and controlling photo-reactions in aromatic molecules. Monitoring of their time-resolved dynamics remains a formidable experimental challenge. In this study, we simulate the photoinduced S3 to S1 non-adiabatic dynamics of cyclooctatetraene (COT), involving multiple CIs with relaxation times in good agreement with experiment. We further investigate the possibility to directly probe the CI passages in COT by off-resonant X-ray Raman spectroscopy (TRUECARS) and time-resolved X-ray diffraction (TRXD). We find that these signals sensitively monitor key chemical features during the ultrafast dynamics. First, we distinguish two CIs by using TRUECARS signals with their appearances at different Raman shifts. Second, we demonstrate that TRXD, where X-ray photons scatter off electron densities, can resolve ultrafast changes in the aromaticity of COT. It can further distinguish between planar and non-planar geometries explored during the dynamics, as e.g. two different tetraradical-type CIs. The knowledge gained from these measurements can give unique insight into fundamental chemical properties that dynamically change during non-adiabatic passages.

8.
Phys Chem Chem Phys ; 24(39): 24095-24104, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36178044

ABSTRACT

Cycloparaphenylenes, being the smallest segments of carbon nanotubes, have emerged as prototypes of the simplest carbon nanohoops. Their unique structure-dynamics-optical properties relationships have motivated a wide variety of synthesis of new related nanohoop species. Studies of how chemical changes, introduced in these new materials, lead to systems with new structural, dynamics and optical properties, expand their functionalities for optoelectronics applications. Herein, we study the effect that conjugation extension of a cycloparaphenylene through the introduction of a satellite tetraphenyl substitution has on its structural and dynamical properties. Our non-adiabatic excited state molecular dynamics simulations suggest that this substitution accelerates the electronic relaxation from the high-energy band to the lowest excited state. This is partially due to efficient conjugation achieved between specific phenyl units as introduced by the tetraphenyl substitution. We observe a particular exciton redistribution during relaxation, in which the tetraphenyl substitution plays a significant role. As a result, an efficient inter-band energy transfer takes place. Besides, the observed phonon-exciton interplay induces a significant exciton self-trapping. Our results encourage and guide the future studies of new phenyl substitutions in carbon nanorings with desired optoelectronic properties.

9.
J Phys Chem Lett ; 13(37): 8755-8760, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36099248

ABSTRACT

Donor-acceptor molecular complexes are a popular class of materials utilizing charge-transfer states for practical applications. A recent class of donor-acceptor dyads based on the fluorescent BODIPY functionalized with triphenylamine (TPA) shows the peculiar property of dual fluorescence. It is hypothesized that instead of the sensitized charge-transfer state being optically dark, it provides an additional bright radiative pathway. Here we use time-dependent density functional theory to characterize the energetic alignment of excitonic and charge-transfer states in a BODIPY-TPA molecular complex. We observe that using a long-range exchange corrected functional in combination with state-specific solvation scheme gives a qualitatively correct alignment of the exciton and charge-transfer states and an enhancement in oscillator strength for the equilibrium solvated charge-transfer state, in agreement with experiment. This work provides rationalization of charge-transfer state emission and provides a foundation to explore charge-transfer using ab initio excited-state nonadiabatic dynamics.

10.
J Phys Chem Lett ; 13(36): 8495-8501, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36066077

ABSTRACT

Progress in organic synthesis opens exploration of a rich diversity of molecules with interesting new structural topologies. This is the case of a recently synthesized helically twisted figure-eight molecule coined infinitene. The molecule belongs to a numerous family of looped polyarenes, where the degree of π-conjugation is controlled by high strain energies and steric hindrances. A particular balance of these ingredients leads to unusual optoelectronic properties potentially suitable for a range of applications in nanoelectronics and photonics. Due to its recent discovery, the photophysical properties of infinitene remain unexplored. In this Letter, atomistic nonadiabatic excited state molecular dynamics modeling unveils unique features of intramolecular electronic and vibrational energy relaxation and redistribution that take place after molecular photoexcitation. Our results detail relationships between optical and electronic properties providing useful knowledge for future molecular designs related to infinitene.


Subject(s)
Molecular Dynamics Simulation , Vibration
11.
J Chem Theory Comput ; 18(9): 5213-5220, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36044726

ABSTRACT

We present a method to link the Nonadiabatic EXcited-state Molecular Dynamics (NEXMD) package to the SANDER package supplied by AMBERTOOLS to provide excited-state adiabatic quantum mechanics/molecular mechanics (QM/MM) simulations. NEXMD is a computational package particularly developed to perform simulations of the photoexcitation and subsequent nonadiabatic electronic and vibrational energy relaxation in large multichromophoric conjugated molecules involving several coupled electronic excited states. The NEXMD-SANDER exchange has been optimized in order to achieve excited-state adiabatic dynamics simulations of large conjugated materials in a QM/MM environment, such as an explicit solvent. Dynamics of a substituted polyphenylene vinylene oligomer (PPV3-NO2) in vacuum and different explicit solvents has been used as a test case by performing comparative analysis of changes in its optical spectrum, state-dependent conformational changes, and quantum bond orderings. The method has been tested and compared with respect to previous implicit solvent implementations. Also, the impact on the expansion of the QM region by including a variable number of solvent molecules has been analyzed. Altogether, these results encourage future implementations of NEXMD simulations using the same combination of methods.


Subject(s)
Molecular Dynamics Simulation , Quantum Theory , Solvents/chemistry
12.
Chem Sci ; 13(21): 6373-6384, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35733898

ABSTRACT

The photoinduced ultrafast coherent inter-chromophore energy redistribution in a triarylamine trimer is explored using nonadiabatic excited state molecular dynamics followed by simulations of X-ray Raman signals. The nitrogencentered system ensures strong interchromophore interactions and, thus, the presence of coherences. Nevertheless, the multitude of non-deterministic photoinduced pathways during the ultrafast inter-branch migration of the excitation results in random confinement on some branches and, therefore, spatial exciton scrambling and loss of phase information at long times. We show that the vibronic coherence dynamics evolving into the incoherent scrambling mechanism on ultrafast 50 fs timescale, is accurately probed by the TRUECARS X-ray stimulated Raman signal. In combination with previous results, where the technique has revealed long-lived coherences in a rigid heterodimer, the signal is most valuable for detecting ultrafast molecular coherences or their absence. We demonstrate that X-ray Raman spectroscopy is a useful tool in the chemical design of functional molecular building blocks.

13.
Bioinformatics ; 38(10): 2742-2748, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35561203

ABSTRACT

MOTIVATION: After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here, we address the performance of AlphaFold2 predictions obtained through ColabFold under this ensemble paradigm. RESULTS: Using a curated collection of apo-holo pairs of conformers, we found that AlphaFold2 predicts the holo form of a protein in ∼70% of the cases, being unable to reproduce the observed conformational diversity with the same error for both conformers. More importantly, we found that AlphaFold2's performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions. AVAILABILITY AND IMPLEMENTATION: Data and code used in this manuscript are publicly available at https://gitlab.com/sbgunq/publications/af2confdiv-oct2021. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteins , Protein Binding , Protein Conformation , Proteins/chemistry
14.
J Phys Chem A ; 126(5): 733-741, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35084863

ABSTRACT

Perylene diimide (PDI) represents a prototype material for organic optoelectronic devices because of its strong optical absorbance, chemical stability, efficient energy transfer, and optical and chemical tunability. Herein, we analyze in detail the vibronic relaxation of its photoexcitation using nonadiabatic excited-state molecular dynamics simulations. We find that after the absorption of a photon, which excites the electron to the second excited state, S2, induced vibronic dynamics features persistent modulations in the spatial localization of electronic and vibrational excitations. These energy exchanges are dictated by strong vibronic couplings that overcome structural disorders and thermal fluctuations. Specifically, the electronic wavefunction periodically swaps between localizations on the right and left sides of the molecule. Within 1 ps of such dynamics, a nonradiative transition to the lowest electronic state, S1, takes place, resulting in a complete delocalization of the wavefunction. The observed vibronic dynamics emerges following the electronic energy deposition in the direction that excites a combination of two dominant vibrational normal modes. This behavior is maintained even with a chemical substitution that breaks the symmetry of the molecule. We believe that our findings elucidate the nature of the complex dynamics of the optically excited states and, therefore, contribute to the development of tunable functionalities of PDIs and their derivatives.

15.
J Comput Chem ; 43(6): 391-401, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34962296

ABSTRACT

Dynamics of protein cavities associated with protein fluctuations and conformational plasticity is essential for their biological function. NMR ensembles, molecular dynamics (MD) simulations, and normal mode analysis (NMA) provide appropriate frameworks to explore functionally relevant protein dynamics and cavity changes relationships. Within this context, we have recently developed analysis of null areas (ANA), an efficient method to calculate cavity volumes. ANA is based on a combination of algorithms that guarantees its robustness against numerical differentiations. This is a unique feature with respect to other methods. Herein, we present an updated and improved version that expands it use to quantify changes in cavity features, like volume and flexibility, due to protein structural distortions performed on predefined biologically relevant directions, for example, directions of largest contribution to protein fluctuations (principal component analysis [PCA modes]) obtained by MD simulations or ensembles of NMR structures, collective NMA modes or any other direction of motion associated with specific conformational changes. A web page has been developed where its facilities are explained in detail. First, we show that ANA can be useful to explore gradual changes of cavity volume and flexibility associated with protein ligand binding. Secondly, we perform a comparison study of the extent of variability between protein backbone structural distortions, and changes in cavity volumes and flexibilities evaluated for an ensemble of NMR active and inactive conformers of the epidermal growth factor receptor structures. Finally, we compare changes in size and flexibility between sets of NMR structures for different homologous chains of dynein.


Subject(s)
Computational Chemistry , ErbB Receptors/chemistry , Molecular Dynamics Simulation , Models, Molecular , Protein Conformation
17.
J Phys Chem B ; 125(49): 13366-13375, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34870419

ABSTRACT

Glutaredoxins are small proteins that share a common well-conserved thioredoxin-fold and participate in a wide variety of biological processes. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (Fe-S) metabolism. In the present work, we report different structural and dynamics aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei that differentiate it from other orthologues by the presence of a parasite-specific unstructured N-terminal extension whose role has not been fully elucidated yet. Previous nuclear magnetic resonance (NMR) studies revealed significant differences with respect to the mutant lacking the disordered tail. Herein, we have performed atomistic molecular dynamics simulations that, complementary to NMR studies, confirm the intrinsically disordered nature of the N-terminal extension. Moreover, we confirm the main role of these residues in modulating the conformational dynamics of the glutathione-binding pocket. We observe that the N-terminal extension modifies the ligand cavity stiffening it by specific interactions that ultimately modulate its intrinsic flexibility, which may modify its role in the storage and/or transfer of preformed iron-sulfur clusters. These unique structural and dynamics aspects of Trypanosoma brucei 1CGrx1 differentiate it from other orthologues and could have functional relevance. In this way, our results encourage the study of other similar protein folding families with intrinsically disordered regions whose functional roles are still unrevealed and the screening of potential 1CGrx1 inhibitors as antitrypanosomal drug candidates.


Subject(s)
Intrinsically Disordered Proteins , Iron-Sulfur Proteins , Trypanosoma brucei brucei , Glutaredoxins/genetics , Glutaredoxins/metabolism , Humans , Ligands , Protein Binding , Protein Folding , Trypanosoma brucei brucei/metabolism
18.
J Phys Chem Lett ; 12(42): 10394-10401, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34669398

ABSTRACT

Donor-acceptor dyads represent a practical approach to tuning the photophysical properties of linear conjugated polymers in materials chemistry. Depending on the absorption wavelength, the acceptor and donor roles can be interchanged, and as such, the directionality of the energy transfer can be controlled. Herein, nonadiabatic excited state molecular dynamics simulations have been performed in an arylethylene-linked perylene-chlorin dyad. After an initial photoexcitation at the Soret band of chlorin, we observe an ultrafast sequential electronic relaxation to the lowest excited state. This process is accomplished through an efficient round-trip chlorin-to-perylene-to-chlorin energy transfer. It is characterized by successive intermittent localized and delocalized vibronic dynamics. Nonradiative relaxation takes place mainly through energy transfer events with perylene acting as a "heat sink" through which the nonradiative relaxation is efficiently funneled, and the excess energy is dispersed in a larger space of vibrational degrees of freedom. Thus, our findings suggest the use of donor-acceptor dyads as a useful strategy when one needs to deactivate an electronic excitation.

19.
J Phys Chem A ; 125(38): 8404-8416, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34542292

ABSTRACT

We examine the redistribution of energy between electronic and vibrational degrees of freedom that takes place between a π-conjugated oligomer, a phenylene-butadiynylene, and two identical boron-dipyrromethene (bodipy) end-caps using femtosecond transient absorption spectroscopy, single-molecule spectroscopy, and nonadiabatic excited-state molecular dynamics (NEXMD) modeling techniques. The molecular structure represents an excitonic seesaw in that the excitation energy on the oligomer backbone can migrate to either one end-cap or the other, but not to both. The NEXMD simulations closely reproduce the characteristic time scale for redistribution of electronic and vibrational energy of 2.2 ps and uncover the vibrational modes contributing to the intramolecular relaxation. The calculations indicate that the dihedral angle between the bodipy dye and the oligomer change upon excitation of the oligomer. Single-molecule experiments reveal a difference in photoluminescence lifetime of the bodipy dyes depending on whether they are excited by direct absorption or by redistribution of energy from the backbone. This difference in lifetime may be attributed to the difference in dihedral angle. The simulations also suggest that a strong coupling can occur between the two end-caps, giving rise to a reversible shuttling of excitation energy between them. Strong coupling should lead to a pronounced loss in polarization memory of the fluorescence since the oligomer backbone tends to be slightly distorted and the two bodipy transition dipoles have different orientations. A sensitive single-molecule technique is presented to test for such coupling. However, although redistribution of electronic and vibrational energy between the end-caps can occur, it appears to be unidirectional and irreversible, suggesting that an additional localization mechanism is at play which is, as yet, not fully accounted for in the simulations.

20.
Chem Sci ; 12(14): 5286-5294, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-34168779

ABSTRACT

The role of quantum-mechanical coherences in the elementary photophysics of functional optoelectronic molecular materials is currently under active study. Designing and controlling stable coherences arising from concerted vibronic dynamics in organic chromophores is the key for numerous applications. Here, we present fundamental insight into the energy transfer properties of a rigid synthetic heterodimer that has been experimentally engineered to study coherences. Quantum non-adiabatic excited state simulations are used to compute X-ray Raman signals, which are able to sensitively monitor the coherence evolution. Our results verify their vibronic nature, that survives multiple conical intersection passages for several hundred femtoseconds at room temperature. Despite the contributions of highly heterogeneous evolution pathways, the coherences are unambiguously visualized by the experimentally accessible X-ray signals. They offer direct information on the dynamics of electronic and structural degrees of freedom, paving the way for detailed coherence measurements in functional organic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...