Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Commun Biol ; 5(1): 370, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440795

ABSTRACT

The obesity epidemic continues to worsen worldwide. However, the mechanisms initiating glucose dysregulation in obesity remain poorly understood. We assessed the role that colonic macrophage subpopulations play in glucose homeostasis in mice fed a high-fat diet (HFD). Concurrent with glucose intolerance, pro-inflammatory/monocyte-derived colonic macrophages increased in mice fed a HFD. A link between macrophage numbers and glycemia was established by pharmacological dose-dependent ablation of macrophages. In particular, colon-specific macrophage depletion by intrarectal clodronate liposomes improved glucose tolerance, insulin sensitivity, and insulin secretion capacity. Colonic macrophage activation upon HFD was characterized by an interferon response and a change in mitochondrial metabolism, which converged in mTOR as a common regulator. Colon-specific mTOR inhibition reduced pro-inflammatory macrophages and ameliorated insulin secretion capacity, similar to colon-specific macrophage depletion, but did not affect insulin sensitivity. Thus, pharmacological targeting of colonic macrophages could become a potential therapy in obesity to improve glycemic control.


Subject(s)
Diet, High-Fat , Insulin Resistance , Animals , Blood Glucose/metabolism , Colon/metabolism , Diet, High-Fat/adverse effects , Glycemic Control , Macrophages/metabolism , Mice , Obesity/etiology , Obesity/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Front Immunol ; 12: 683022, 2021.
Article in English | MEDLINE | ID: mdl-34054875

ABSTRACT

The innate immune system is the oldest protection strategy that is conserved across all organisms. Although having an unspecific action, it is the first and fastest defense mechanism against pathogens. Development of predominantly the adaptive immune system takes place after birth. However, some key components of the innate immune system evolve during the prenatal period of life, which endows the newborn with the ability to mount an immune response against pathogenic invaders directly after birth. Undoubtedly, the crosstalk between maternal immune cells, antibodies, dietary antigens, and microbial metabolites originating from the maternal microbiota are the key players in preparing the neonate's immunity to the outer world. Birth represents the biggest substantial environmental change in life, where the newborn leaves the protective amniotic sac and is exposed for the first time to a countless variety of microbes. Colonization of all body surfaces commences, including skin, lung, and gastrointestinal tract, leading to the establishment of the commensal microbiota and the maturation of the newborn immune system, and hence lifelong health. Pregnancy, birth, and the consumption of breast milk shape the immune development in coordination with maternal and newborn microbiota. Discrepancies in these fine-tuned microbiota interactions during each developmental stage can have long-term effects on disease susceptibility, such as metabolic syndrome, childhood asthma, or autoimmune type 1 diabetes. In this review, we will give an overview of the recent studies by discussing the multifaceted emergence of the newborn innate immune development in line with the importance of maternal and early life microbiota exposure and breast milk intake.


Subject(s)
Child Development , Immune System/immunology , Microbiota , Milk/microbiology , Age Factors , Animals , Animals, Newborn , Environment , Female , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Gestational Age , Humans , Immune System/metabolism , Immunity, Innate , Infant, Newborn , Microbiota/immunology , Milk/immunology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...