Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Front Med (Lausanne) ; 10: 1094843, 2023.
Article in English | MEDLINE | ID: mdl-37153085

ABSTRACT

Background: Sarcoidosis is an immune-mediated systemic disease with unknown etiology affecting the lung predominantly. The clinical manifestation of sarcoidosis is rather diverse ranging from Löfgren's syndrome to fibrotic disease. Also, it differs among patients with distinct geographical and ethnic origins, consistent with environmental and genetic factors' role in its pathogenesis. Of those, the polymorphic genes of the HLA system have been previously implicated in sarcoidosis. Therefore, we have performed an association study in a well-defined cohort of Czech patients aiming to define how variation in HLA genes, may contribute to disease origin and development. Materials and methods: Total of the 301 Czech unrelated sarcoidosis patients were diagnosed according to international guidelines. In those, HLA typing was performed using next-generation sequencing. The allele frequencies at six HLA loci (HLA-A,-B,-C,-DRB1,-DQA1, and -DQB1) observed in the patients were compared with HLA allele distribution determined in 309 unrelated healthy Czech subjects; sub-analyses of relationships between HLA and distinct sarcoidosis clinical phenotypes were performed. Associations were assessed by two-tailed Fischer's exact test with correction for multiple comparisons. Results: We report two variants, HLA-DQB1*06:02, and HLA-DQB1*06:04, as risk factors for sarcoidosis, and three variants, HLA-DRB1*01:01, HLA-DQA1*03:01, and HLA-DQB1*03:02 as protective factors. HLA-B*08:01, HLA-C*07:01, HLA-DRB1*03:01, HLA-DQA1*05:01, and HLA-DQB1*02:01 variants associated with Löfgren's syndrome, a more benign phenotype. HLA- DRB1*03:01 and HLA-DQA1*05:01 alleles were connected with better prognosis-chest X-ray (CXR) stage 1, disease remission, and non-requirement of corticosteroid treatment. The alleles HLA-DRB1*11:01 and HLA-DQA1*05:05 are associated with more advanced disease represented by the CXR stages 2-4. HLA-DQB1*05:03 associated with sarcoidosis extrapulmonary manifestation. Conclusion: In our Czech cohort, we document some associations between sarcoidosis and HLA previously described in other populations. Further, we suggest novel susceptibility factors for sarcoidosis, such as HLA-DQB1*06:04, and characterize associations between HLA and sarcoidosis clinical phenotypes in Czech patients. Our study also extends the role of the 8.1 ancestral haplotype (HLA-A*01:01∼HLA-B*08:01∼HLA-C*07:01∼HLA-DRB1*03:01∼HLA-DQA1*05:01∼HLA-DQB1*02:01), already implicated in autoimmune diseases, as a possible predictor of better prognosis in sarcoidosis. The general translational application of our newly reported findings for personalized patient care should be validated by an independent study from another, international referral center.

2.
Clin Exp Immunol ; 204(1): 144-151, 2021 04.
Article in English | MEDLINE | ID: mdl-33421092

ABSTRACT

Behçet disease is a multi-system disease associated with human leukocyte antigen (HLA) class I polymorphism. High-resolution next-generation sequencing (NGS) with haplotype analysis has not been performed previously for this disease. Sixty Egyptian patients diagnosed according to the International Study Group (ISG) criteria for Behçet disease and 160 healthy geographic and ethnic-matched controls were genotyped for HLA class I loci (HLA-A, B, C). For HLA class II loci (DRB1, DRB3/4/5, DQA1, DQB1, DPA1, DPB1), 40 control samples were genotyped. High-resolution HLA genotyping was performed using NGS and the results were analyzed. Clinical manifestations were oral ulcers (100%), genital ulcers (100%), eye (55%) and neurological (28%) and vascular involvement (35%). HLA-B*51:08 [odds ratio (OR) = 19·75, 95% confidence interval (CI) = 6·5-79; P < 0·0001], HLA-B*15:03 (OR = 12·15, 95% CI = 3·7-50·7; P < 0·0001), HLA-C*16:02 (OR = 6·53, 95% CI = 3-14; P < 0·0001), HLA-A*68:02 (OR = 3·14, 95% CI = 1·1-8·9; P < 0·01) were found to be associated with Behçet disease, as were HLA-DRB1*13:01 and HLA-DQB1*06:03 (OR = 3·39, 95% CI = 0·9-18·9; P = 0·04 for both). By contrast, HLA-A*03:01 (OR = 0·13, 95% CI = 0-0·8; P = 0·01) and HLA-DPB1*17:01 were found to be protective (OR = 0·27, 95% CI = 0·06-1·03; P = 0·02). We identified strong linkage disequilibrium between HLA-B*51:08 and C*16:02 and A*02:01 in a haplotype associated with Behçet disease. HLA-B*51:08 was significantly associated with legal blindness (OR = 2·98, 95% CI = 1·06-8·3; P = 0·01). In Egyptian Behçet patients, HLA-B*51:08 is the most common susceptibility allele and holds poor prognosis for eye involvement.


Subject(s)
Behcet Syndrome/genetics , HLA Antigens/genetics , HLA-B Antigens/genetics , HLA-C Antigens/genetics , HLA-D Antigens/genetics , High-Throughput Nucleotide Sequencing/methods , Adult , Alleles , Behcet Syndrome/pathology , Egypt , Female , Gene Frequency , Genotype , Haplotypes , Humans , Male , Middle Aged , Polymorphism, Genetic
3.
Hum Immunol ; 80(3): 157-162, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30708029

ABSTRACT

The Mestizos of Oaxaca resulted from the admixture of Zapotecan Natives with Spaniards and Africans. We selected 112 donors from Oaxaca and applied next-generation sequencing to characterize exon and intron variants in complete or extended HLA genes. Some alleles found, are unique to Mexican Natives and most likely will be absent in most major ethnicities, namely: Caucasians, Africans or Asians. Among these are HLA-A*68:03:01, HLA-A*68:05:01, HLA-C*03:04:01:02, HLA-C*15:09, HLA-C*3:05, HLA-C*03:06:01, HLA-B*39:05:01, HLA-B*35:14:01, HLA-B*35:12:01, HLA-B*35:43:01, HLA-B*40:05, HLA-B:40:08, HLA-B*51:02:01, HLA-B*35:24:01 and HLA-B*39:08. HLA-DQA1*05:05:01:05 and some HLA-DRB1 alleles were only present in Amerindians/Mestizos. Three haplotypes are unique to Mexican Natives, five to Middle-Eastern and Sephardi-Jews. We detected a novel HLA-DQA1*04:01:01 exon 4 variant. Any novel allele may have been positively selected to enlarge the peptide-binding repertoire, and some, like HLA-B*39:02:02 and HLA-B*39:05:01 were found with unique haplotype associations, suggesting convergent evolution events and/or allele lineage diversification. The allele frequencies were fairly evenly distributed in most HLA loci with the exception of HLA-DPB1. The application of NGS in Oaxaca is novel and will lead to better use in the clinical setting. It offers deep knowledge on the population structure, origins, migration, and discovery of new alleles and haplotypes that other techniques did not achieve.


Subject(s)
Alleles , Ethnicity/genetics , Genetics, Population , HLA Antigens/genetics , Adult , Female , Gene Frequency , Haplotypes , High-Throughput Nucleotide Sequencing , Histocompatibility Testing , Humans , Male , Mexico , Sequence Analysis, DNA
5.
HLA ; 91(1): 36-51, 2018 01.
Article in English | MEDLINE | ID: mdl-29160618

ABSTRACT

With the aim to understand how next-generation sequencing (NGS) improves both our assessment of genetic variation within populations and our knowledge on HLA molecular evolution, we sequenced and analysed 8 HLA loci in a well-documented population from sub-Saharan Africa (Mandenka). The results of full-gene NGS-MiSeq sequencing compared with those obtained by traditional typing techniques or limited sequencing strategies showed that segregating sites located outside exon 2 are crucial to describe not only class I but also class II population diversity. A comprehensive analysis of exons 2, 3, 4 and 5 nucleotide diversity at the 8 HLA loci revealed remarkable differences among these gene regions, notably a greater variation concentrated in the antigen recognition sites of class I exons 3 and some class II exons 2, likely associated with their peptide-presentation function, a lower diversity of HLA-C exon 3, possibly related to its role as a KIR ligand, and a peculiar molecular diversity of HLA-A exon 2, revealing demographic signals. Based on full-length HLA sequences, we also propose that the most frequent DRB1 allele in the studied population, DRB1*13:04, emerged from an allelic conversion involving 3 potential alleles as donors and DRB1*11:02:01 as recipient. Finally, our analysis revealed a high occurrence of the DRB1*13:04-DQA1*05:05:01-DQB1*03:19 haplotype, possibly resulting from a selective sweep due to protection to Onchorcerca volvulus, a prevalent pathogen in West Africa. This study unveils highly relevant information on the molecular evolution of HLA genes in relation to their immune function, calling for similar analyses in other populations living in contrasting environments.


Subject(s)
HLA-A Antigens/genetics , HLA-C Antigens/genetics , HLA-DQ alpha-Chains/genetics , HLA-DRB1 Chains/genetics , Adult , Africa South of the Sahara , Female , Humans , Male
6.
HLA ; 90(5): 284-291, 2017 11.
Article in English | MEDLINE | ID: mdl-28842944

ABSTRACT

Next generation sequencing (NGS) methods have been established as an efficient approach for HLA typing because unlike traditional Sanger sequencing, they provide unambiguous results at a reasonable cost. We previously developed a multi-locus index method to genotype four HLA loci (A, B, C, and DRB1) on the Illumina MiSeq platform. We have now expanded this method to include two additional loci, HLA-DPB1 and DQB1. Contiguous full-length amplicons from 5'UTR through 3'UTR regions were generated using one long-range PCR reaction per locus for each of the six loci from 96 individuals of different ethnicities. The six amplicons from each donor were pooled, enzymatically fragmented and given a donor-specific index. This approach enabled sequencing of 576 loci from 96 individuals in a single MiSeq run. Donor-specific sequence reads were demultiplexed, and allele calls were generated from FASTQ files using commercially available software. Comparison to HLA genotypes generated from Sanger sequence-based typing (SBT) identified no discordances among any of the alleles analyzed in this study. Importantly, this method was able to resolve 22 DPB1 and 20 DQB1 alleles that were ambiguous with the SBT method. Furthermore, a novel allele in each of these two loci was identified, with the DQB1*05:01:24 allele having a frequency of greater than five percent. This method was subsequently validated against a blinded panel of 22 samples from the 17th International HLA and Immunogenetics Workshop. The flexibility of the method is further highlighted by successful genotyping of eight loci comprising all classical HLA loci for a subset of the samples. We now present a high-throughput, high-resolution, scalable NGS HLA typing method to accurately and efficiently genotype all classical HLA class I and II loci.


Subject(s)
Genetic Loci , HLA Antigens/genetics , High-Throughput Nucleotide Sequencing/methods , Tissue Donors , Alleles , Genotype , Humans , Polymerase Chain Reaction
7.
Bone Marrow Transplant ; 52(4): 580-587, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27991894

ABSTRACT

We hypothesized that IV busulfan (Bu) dosing could be safely intensified through pharmacokinetic (PK-) dose guidance to minimize the inter-patient variability in systemic exposure (SE) associated with body-sized dosing, and that this should improve outcome of AML/MDS patients undergoing allogeneic stem cell transplantation. To test this hypothesis, we treated 218 patients (median age 50.7 years, male/female 50/50%) with fludarabine 40 mg/m2 once daily x4, each dose followed by IV Bu, randomized to 130 mg/m2 (N=107) or PK-guided to average daily SE, AUC of 6000 µM min (N=111), stratified for remission status and allo-grafting from HLA-matched donors. Toxicity and GvHD rates in the groups were similar; the risk of relapse or treatment-related mortality remained higher in the fixed-dose group throughout the 80-month observation period. Further, PK-guidance yielded safer disease control, leading to improved overall and PFS, most prominently in MDS patients and in AML patients not in remission at allogeneic stem cell transplantation. We conclude that AML/MDS patients receiving pretransplant conditioning treatment with our 4-day regimen may benefit significantly from PK-guided Bu dosing. This could be considered an alternative to fixed-dose delivery since it provides the benefit of precise dose delivery to a predetermined SE without increasing risk(s) of serious toxicity and/or GvHD.


Subject(s)
Busulfan/administration & dosage , Drug Monitoring/methods , Leukemia, Myeloid, Acute/therapy , Myelodysplastic Syndromes/therapy , Transplantation Conditioning/methods , Transplantation, Homologous/methods , Vidarabine/analogs & derivatives , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/toxicity , Busulfan/pharmacokinetics , Busulfan/toxicity , Female , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/mortality , Humans , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Myelodysplastic Syndromes/mortality , Recurrence , Survival Analysis , Transplantation Conditioning/mortality , Transplantation, Homologous/mortality , Treatment Outcome , Vidarabine/administration & dosage
8.
Hum Immunol ; 76(12): 910-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26037172

ABSTRACT

Compared to Sanger sequencing, next-generation sequencing offers advantages for high resolution HLA genotyping including increased throughput, lower cost, and reduced genotype ambiguity. Here we describe an enhancement of the Roche 454 GS GType HLA genotyping assay to provide very high resolution (VHR) typing, by the addition of 8 primer pairs to the original 14, to genotype 11 HLA loci. These additional amplicons help resolve common and well-documented alleles and exclude commonly found null alleles in genotype ambiguity strings. Simplification of workflow to reduce the initial preparation effort using early pooling of amplicons or the Fluidigm Access Array™ is also described. Performance of the VHR assay was evaluated on 28 well characterized cell lines using Conexio Assign MPS software which uses genomic, rather than cDNA, reference sequence. Concordance was 98.4%; 1.6% had no genotype assignment. Of concordant calls, 53% were unambiguous. To further assess the assay, 59 clinical samples were genotyped and results compared to unambiguous allele assignments obtained by prior sequence-based typing supplemented with SSO and/or SSP. Concordance was 98.7% with 58.2% as unambiguous calls; 1.3% could not be assigned. Our results show that the amplicon-based VHR assay is robust and can replace current Sanger methodology. Together with software enhancements, it has the potential to provide even higher resolution HLA typing.


Subject(s)
HLA Antigens/genetics , High-Throughput Nucleotide Sequencing/methods , Histocompatibility Testing , Alleles , Cell Line , Computational Biology/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , Software , Workflow
9.
Bone Marrow Transplant ; 50(3): 411-3, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25621795

ABSTRACT

Loss of heterozygosity (LOH) has been shown to be associated with leukemia relapse after haploidentical transplantation. Whether such changes are an important cause of relapse after HLA-matched transplantation remains unclear. We retrospectively HLA-typed leukemic blasts for 71 patients with AML/myelodysplastic syndrome obtained from stored samples, and the results were compared with those obtained at diagnosis and/or before the transplant. No LOH or any other changes in HLA Ag were found in any of the samples tested post transplant as compared with pretransplant specimens. One patient had LOH in HLA class I Ag (HLA-A,-B and -C); however, these changes were present in the pretransplant sample indicating that they occurred before the transplant. We concluded that, in contrast with haploidentical transplantation, HLA loss does not have a major role as a mechanism of relapse after allogeneic transplantation with a closely HLA-matched donor.


Subject(s)
HLA Antigens/immunology , Hematopoietic Stem Cell Transplantation/methods , Leukemia/immunology , Leukemia/therapy , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Recurrence , Retrospective Studies , Transplantation, Homologous , Young Adult
10.
Tissue Antigens ; 84(3): 285-92, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25040134

ABSTRACT

Genetic matching for loci in the human leukocyte antigen (HLA) region between a donor and a patient in hematopoietic stem cell transplantation (HSCT) is critical to outcome; however, methods for HLA genotyping of donors in unrelated stem cell registries often yield results with allelic and phase ambiguity and/or do not query all clinically relevant loci. We present and evaluate a statistical method for in silico imputation of HLA alleles and haplotypes in large ambiguous population data from the Be The Match(®) Registry. Our method builds on haplotype frequencies estimated from registry populations and exploits patterns of linkage disequilibrium (LD) across HLA haplotypes to infer high resolution HLA assignments. We performed validation on simulated and real population data from the Registry with non-trivial ambiguity content. While real population datasets caused some predictions to deviate from expectation, validations still showed high percent recall for imputed results with average recall >76% when imputing HLA alleles from registry data. We simulated ambiguity generated by several HLA genotyping methods to evaluate the imputation performance on several levels of typing resolution. On average, imputation percent recall of allele-level HLA haplotypes was >95% for allele-level typing, >92% for intermediate resolution typing and >58% for serology (low-resolution) typing. Thus, allele-level HLA assignments can be imputed through the application of a set of statistical and population genetics inferences and with knowledge of haplotype frequencies and self-identified race and ethnicities.


Subject(s)
Ethnicity , HLA Antigens/genetics , Hematopoietic Stem Cell Transplantation , Histocompatibility Testing/methods , Alleles , Computer Simulation/statistics & numerical data , Gene Frequency , Genetic Loci/genetics , Genotype , Haplotypes , Histocompatibility Testing/statistics & numerical data , Humans , Linkage Disequilibrium , Models, Genetic , Registries , Tissue Donors , United States
11.
Bone Marrow Transplant ; 49(9): 1176-83, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24955785

ABSTRACT

HLA-DP antigens are beta-alpha heterodimers encoded by polymorphic HLA-DPB1 and -DPA1 alleles, respectively, in strong linkage disequilibrium (LD) with each other. Non-permissive unrelated donor (UD)-recipient HLA-DPB1 mismatches across three different T-cell epitope (TCE) groups are associated with increased mortality after hematopoietic SCT (HCT), but the role of HLA-DPA1 is unclear. We studied 1281 onco-hematologic patients after 10/10 HLA-matched UD-HCT facilitated by the National Marrow Donor Program. Non-permissive mismatches defined solely by HLA-DPB1 TCE groups were associated with significantly higher risks of TRM compared to permissive mismatches (hazard ratio (HR) 1.30, confidence interval (CI) 1.06-1.53; P=0.009) or allele matches. Moreover, non-permissive HLA-DPB1 TCE group mismatches in the graft versus host (GvH) direction significantly decreased the risk of relapse compared to permissive mismatches (HR 0.55, CI 0.37-0.80; P=0.002) or allele matches. Splitting each group into HLA-DPA1*02:01 positive or negative, in frequent LD with HLA-DPB1 alleles from two of the three TCE groups, or into HLA-DPA1 matched or mismatched, did not significantly alter the observed risk associations. Our findings suggest that the effects of clinically non-permissive HLA-DPB1 TCE group mismatches are independent of HLA-DPA1, and that selection of donors with non-permissive DPB1 TCE mismatches in GvH direction might provide some protection from disease recurrence.


Subject(s)
Epitopes, T-Lymphocyte/immunology , HLA-DP alpha-Chains/immunology , HLA-DP beta-Chains/immunology , Hematopoietic Stem Cell Transplantation/methods , Transplantation Conditioning/methods , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Epitope Mapping , Female , Humans , Infant , Male , Middle Aged , Risk , Unrelated Donors , Young Adult
12.
Int J Immunogenet ; 40(1): 31-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23302097

ABSTRACT

This report describes the project to identify the global distribution of extended HLA haplotypes, a component of 16th International HLA and Immunogenetics Workshop (IHIW), and summarizes the initial analyses of data collected. The project aims to investigate extended HLA haplotypes, compare their distribution among different populations, assess their frequency in hematopoietic stem cell unrelated donor registries and initiate an international family studies database and DNA repository to be made publicly available. HLA haplotypes compiled in immunogenetics laboratories during the evaluation of transplant candidates and related potential donors were analysed. Haplotypes were determined using the pedigree analysis tool publicly available from the National Marrow Donor Program (NMDP) website. Nineteen laboratories from 10 countries (11 laboratories from North America, five from Asia, two from Latin America and one from Australia) contributed data on a total of 1719 families comprised of 7474 individuals. We identified 10393 HLA haplotypes, of which 1682 haplotypes included high-resolution typing at HLA-A, B, C, DRB1 and DQB1 loci. We also present haplotypes containing MICA and other HLA loci and haplotypes containing rare alleles seen in these families. The project will be extended through the 17th IHIW, and investigators interested in joining the project may communicate with the first author.


Subject(s)
Genetic Variation , HLA Antigens/genetics , Haplotypes , Population Groups/genetics , Australia , Gene Frequency , Genetics, Population , Genotype , HLA Antigens/classification , Histocompatibility Antigens Class I/genetics , Humans , North America
13.
Int J Immunogenet ; 40(1): 60-5, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23198982

ABSTRACT

Continuing a project presented at the 15th International HLA and Immunogenetics Workshop (IHIWS) on the rarity of HLA alleles, we sought to expand the number of data sources and bioinformatics tools available in the Allele Frequencies Net Database website (AFND, www.allelefrequencies.net). In this 16th IHIWS Rare Alleles project, HLA alleles described in the latest IMGT/HLA Database (release 3.8.0) were queried against different sources including data from registries (stem cell) and from 74 different laboratories around the world. We demonstrated that approximately 40% of the alleles officially named in the IMGT/HLA Database have been reported only once across all different sources. To facilitate the large-scale analysis of rare alleles, we have produced an online tool called the Rare Allele Detector that simplifies the detection of alleles that are considered to be 'very rare', 'rare' or 'frequent'. Tools and associated data can be accessed via the www.allelefrequencies.net website.


Subject(s)
Alleles , HLA Antigens , Immunogenetics , Computational Biology , Databases, Factual , Gene Frequency , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Internet , Population Groups/genetics
14.
Tissue Antigens ; 77(6): 562-71, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21447146

ABSTRACT

Pre-erythrocytic immunity to Plasmodium falciparum malaria is likely to be mediated by T-cell recognition of malaria epitopes presented on infected host cells via class I and II major histocompatibility complex (MHC) antigens. To test for associations of human leukocyte antigen (HLA) alleles with disease severity, we performed high-resolution typing of HLA class I and II loci and compared the distributions of alleles of HLA-A, -B, -C and -DRB1 loci in 359 Malian children of Dogon ethnicity with uncomplicated or severe malaria. We observed that alleles A*30:01 and A*33:01 had higher frequency in the group of patients with cerebral disease compared to patients with uncomplicated disease [A*30:01: gf = 0.2031 vs gf = 0.1064, odds ratio (OR) = 3.17, P = 0.004, confidence interval (CI) (1.94-5.19)] and [A*33:01: gf = 0.0781 vs gf = 0.0266, 4.21, P = 0.005, CI (1.89-9.84)], respectively. The A*30:01 and A*33:01 alleles share some sequence motifs and A*30:01 appears to have a unique peptide binding repertoire compared to other A*30 group alleles. Computer algorithms predicted malaria peptides with strong binding affinity for HLA-A*30:01 and HLA-A*33:01 but not to closely related alleles. In conclusion, we identified A*30:01 and A*33:01 as potential susceptibility factors for cerebral malaria, providing further evidence that polymorphism of MHC genes results in altered malaria susceptibility.


Subject(s)
HLA-A Antigens/genetics , Histocompatibility Antigens Class II/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/metabolism , Adolescent , Algorithms , Alleles , Child , Child, Preschool , Genetic Predisposition to Disease , Humans , Infant , Interleukin-10/genetics , Leukocytes, Mononuclear/cytology , Malaria, Falciparum/genetics , Mali , Odds Ratio , Polymorphism, Genetic
16.
Tissue Antigens ; 76(6): 442-58, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20860586

ABSTRACT

The Jewish diaspora can be viewed as a natural process in population dispersion and differentiation. We extend genetic studies on the Jewish diaspora to an analysis of human leukocyte antigen (HLA) haplotype distributions in the Jewish peoples, and show the value of this information for the design of Jewish marrow donor registries. HLA data from the Hadassah Bone Marrow Registry having parental country-of-origin information comprise samples of geographically discrete regions. We analyzed the HLA allele and haplotype frequencies for each national sample using population genetic and clustering methods. Population differentiation among diaspora populations was shown on the basis of HLA haplotype frequencies, including differences within the more recently diverged European groups. A method of haplotype and population clustering showed patterns of unique haplotype affinities associated with specific Jewish populations. The evidence showed that diaspora Jewish populations can be sorted into distinct clades of which the Ashkenazi are but one. Relationships among Jewish populations are interpretable in light of the historical record. We suggest that a major contributing factor to the genetic divergence between Jewish groups may have been admixture with local host populations, while, at the same time, threads of Eastern Mediterranean ancestry remain evident.


Subject(s)
HLA Antigens/genetics , Jews/genetics , Female , Genetics, Medical/methods , HLA Antigens/immunology , Haplotypes , Humans , Male
17.
Neurology ; 75(7): 634-40, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20713950

ABSTRACT

OBJECTIVE: In addition to the main multiple sclerosis (MS) major histocompatibility complex (MHC) risk allele (HLA DRB1*1501), investigations of the MHC have implicated several class I MHC loci (HLA A, HLA B, and HLA C) as potential independent MS susceptibility loci. Here, we evaluate the role of 3 putative protective alleles in MS: HLA A*02, HLA B*44, and HLA C*05. METHODS: Subjects include a clinic-based patient sample with a diagnosis of either MS or a clinically isolated syndrome (n = 532), compared to subjects in a bone marrow donor registry (n = 776). All subjects have 2-digit HLA data. Logistic regression was used to determine the independence of each allele's effect. We used linear regression and an additive model to test for correlation between an allele and MRI and clinical measures of disease course. RESULTS: After accounting for the effect of HLA DRB1*1501, both HLA A*02 and HLA B*44 are validated as susceptibility alleles (p(A*02) 0.00039 and p(B*44) 0.00092) and remain significantly associated with MS susceptibility in the presence of the other allele. Although A*02 is not associated with MS outcome measures, HLA B*44 demonstrates association with a better radiologic outcome both in terms of brain parenchymal fraction and T2 hyperintense lesion volume (p = 0.03 for each outcome). CONCLUSION: The MHC class I alleles HLA A*02 and HLA B*44 independently reduce susceptibility to MS, but only HLA B*44 appears to influence disease course, preserving brain volume and reducing the burden of T2 hyperintense lesions in subjects with MS.


Subject(s)
Genetic Predisposition to Disease , HLA-B Antigens/genetics , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnosis , Multiple Sclerosis/genetics , Adult , Chi-Square Distribution , Disease Progression , Female , Gene Frequency , Genome-Wide Association Study , Genotype , HLA Antigens/genetics , HLA-A Antigens/genetics , HLA-B44 Antigen , HLA-C Antigens/genetics , Humans , Logistic Models , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Outcome Assessment, Health Care , Radiography , Severity of Illness Index
19.
Bone Marrow Transplant ; 45(5): 846-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20348972

ABSTRACT

The WHO Nomenclature Committee for Factors of the HLA System met during the 15th International Histocompatibility and Immunogenetics Workshop in Buzios, Brazil in September 2008. This update is an extract of the main report that documents the additions and revisions to the nomenclature of human leukocyte antigen (HLA) specificities following the principles established in previous reports.


Subject(s)
HLA Antigens , Terminology as Topic , World Health Organization , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...