Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Curr Opin Insect Sci ; 61: 101151, 2024 02.
Article in English | MEDLINE | ID: mdl-38097038

ABSTRACT

Honeydew is the excretion of plant-feeding hemipterans and it is one of the most abundant source of carbohydrates for parasitoids and predators in agroecosystems. Being so abundant, honeydew mediates direct and indirect interactions that affect biological control. We describe these interactions and identify honeydew-management strategies to reduce pest pressure. First, the presence of nondamaging honeydew producers in cover crops and hedges increases the efficacy of parasitoids and predators. Second, breaking the mutualism between ants and honeydew-producing pests with alternative sugar sources promotes biological control of these pests. Third, we propose to explore honeydew volatiles to attract biological control agents and repel pests, as well as to induce plant defenses. Finally, we urge reducing the use of systemic pesticides that contaminate honeydew and negatively affect biological control agents that feed on it. Overall, we propose that honeydew management is integrated in pest management programs to contribute to sustainable agriculture.


Subject(s)
Ants , Biological Control Agents , Animals , Pest Control , Symbiosis
2.
Trends Plant Sci ; 27(6): 528-535, 2022 06.
Article in English | MEDLINE | ID: mdl-35027280

ABSTRACT

Plants may effectively tailor defenses by recognizing their attackers and reprogramming their physiology. Although most plants are under attack by a large diversity of herbivores, surprisingly little is known about the physiological capabilities of plants to deal with attack by multiple herbivores. Studies on dual herbivore attack identified that defense against one attacker may cause energetic and physiological constraints to deal with a second attacker. How these constraints shape plant plasticity in defense to their full community of attackers is a major knowledge gap in plant science. Here, we provide a framework for plant defense to multiherbivore attack by defining the repertoire of plastic defense strategies that may allow plants to optimize their defenses against a multitude of stressors.


Subject(s)
Herbivory , Insecta , Animals , Insecta/physiology , Plants
3.
Nat Plants ; 7(10): 1347-1353, 2021 10.
Article in English | MEDLINE | ID: mdl-34650263

ABSTRACT

Plants have evolved plastic defence strategies to deal with the uncertainty of when, by which species and in which order attack by herbivores will take place1-3. However, the responses to current herbivore attack may come with a cost of compromising resistance to other, later arriving herbivores. Due to antagonistic cross-talk between physiological regulation of plant resistance to phloem-feeding and leaf-chewing herbivores4-8, the feeding guild of the initial herbivore is considered to be the primary factor determining whether resistance to subsequent attack is compromised. We show that, by investigating 90 pairwise insect-herbivore interactions among ten different herbivore species, resistance of the annual plant Brassica nigra to a later arriving herbivore species is not explained by feeding guild of the initial attacker. Instead, the prevalence of herbivore species that arrive on induced plants as approximated by three years of season-long insect community assessments in the field explained cross-resistance. Plants maintained resistance to prevalent herbivores in common patterns of herbivore arrival and compromises in resistance especially occurred for rare patterns of herbivore attack. We conclude that plants tailor induced defence strategies to deal with common patterns of sequential herbivore attack and anticipate arrival of the most prevalent herbivores.


Subject(s)
Adaptation, Biological , Herbivory , Insecta/physiology , Mustard Plant/physiology , Plant Defense Against Herbivory , Animals , Phloem/physiology , Species Specificity
4.
New Phytol ; 231(6): 2333-2345, 2021 09.
Article in English | MEDLINE | ID: mdl-33484613

ABSTRACT

Plants are often attacked by multiple insect herbivores. How plants deal with an increasing richness of attackers from a single or multiple feeding guilds is poorly understood. We subjected black mustard (Brassica nigra) plants to 51 treatments representing attack by an increasing species richness (one, two or four species) of either phloem feeders, leaf chewers, or a mix of both feeding guilds when keeping total density of attackers constant and studied how this affects plant resistance to subsequent attack by caterpillars of the diamondback moth (Plutella xylostella). Increased richness in phloem-feeding attackers compromised resistance to P. xylostella. By contrast, leaf chewers induced a stronger resistance to subsequent attack by caterpillars of P. xylostella while species richness did not play a significant role for chewing herbivore induced responses. Attack by a mix of herbivores from different feeding guilds resulted in plant resistance similar to resistance levels of plants that were not previously exposed to herbivory. We conclude that B. nigra plants channel their defence responses stronger towards a feeding-guild specific response when under multi-species attack by herbivores of the same feeding guild, but integrate responses when simultaneously confronted with a mix of herbivores from different feeding guilds.


Subject(s)
Herbivory , Moths , Animals , Larva , Mustard Plant , Phloem
5.
Ecol Lett ; 23(7): 1073-1084, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32307873

ABSTRACT

Plants are regularly colonised by fungi and bacteria, but plant-inhabiting microbes are rarely considered in studies on plant-herbivore interactions. Here we show that young gypsy moth (Lymantria dispar) caterpillars prefer to feed on black poplar (Populus nigra) foliage infected by the rust fungus Melampsora larici-populina instead of uninfected control foliage, and selectively consume fungal spores. This consumption, also observed in a related lepidopteran species, is stimulated by the sugar alcohol mannitol, found in much higher concentration in fungal tissue and infected leaves than uninfected plant foliage. Gypsy moth larvae developed more rapidly on rust-infected leaves, which cannot be attributed to mannitol but rather to greater levels of total nitrogen, essential amino acids and B vitamins in fungal tissue and fungus-infected leaves. Herbivore consumption of fungi and other microbes may be much more widespread than commonly believed with important consequences for the ecology and evolution of plant-herbivore interactions.


Subject(s)
Basidiomycota , Moths , Populus , Animals , Herbivory , Larva , Plant Leaves
6.
Curr Opin Insect Sci ; 32: 54-60, 2019 04.
Article in English | MEDLINE | ID: mdl-31113632

ABSTRACT

Insects typically forage in complex habitats in which their resources are surrounded by non-resources. For herbivores, pollinators, parasitoids, and higher level predators research has focused on how specific trophic levels filter and integrate information from cues in their habitat to locate resources. However, these insights frequently build specific theory per trophic level and seldom across trophic levels. Here, we synthesize advances in understanding of insect foraging behavior in complex habitats by comparing trophic levels in specialist host-parasitoid-hyperparasitoid systems. We argue that resources may become less apparent to foraging insects when they are member of higher trophic levels and hypothesize that higher trophic level organisms require a larger number of steps in their foraging decisions. We identify important knowledge gaps of information integration strategies by insects that belong to higher trophic levels.


Subject(s)
Appetitive Behavior , Insecta/physiology , Insecta/parasitology , Animals , Cues , Food Chain , Herbivory , Plants/chemistry , Volatile Organic Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...