Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(30): 20259-20266, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28726892

ABSTRACT

Globular molecules of 1-chloroadamantane form a plastic phase in which the molecules rotate in a restrained way, but with their centers of mass forming a crystalline ordered lattice. Plastic phases can be regarded as test cases for the study of disordered phases since, contrary to what happens in the liquid phase, there is a lack of stochastic translational degrees of freedom. When the temperature is increased, a hump in the specific heat curve is observed indicating a change in the energetic footprint of the dynamics of the molecules. This change takes place without a change in the symmetry of the crystalline lattice, i.e. no first-order transition is observed between temperatures below and above the calorimetric hump. This implies that subtle changes in the dynamics of the disordered plastic phase concerning purely orientational degrees of freedom should appear at the thermodynamic anomaly. Accordingly, we describe, for the first time, the microscopic mechanisms behind a disorder-disorder transition through the analysis of neutron diffraction and QENS experiments. The results evince a change in the molecular rotational dynamics accompanied by a continuous change in density.

2.
Phys Rev Lett ; 108(21): 216402, 2012 May 25.
Article in English | MEDLINE | ID: mdl-23003286

ABSTRACT

We have investigated the noncentrosymmetric tetragonal heavy-fermion antiferromagnetic compound CeCuAl3 (T(N)=2.5 K) using inelastic neutron scattering (INS). Our INS results unequivocally reveal the presence of three magnetic excitations centered at 1.3, 9.8, and 20.5 meV. These spectral features cannot be explained within the framework of crystal-electric-field models and recourse to Kramers' theorem for a 4f(1) Ce(3+) ion. To overcome these interpretational difficulties, we have generalized the vibron model of Thalmeier and Fulde for cubic CeAl(2) to tetragonal point-group symmetry with the theoretically calculated vibron form-factor. This extension provides a satisfactory explanation for the position and intensity of the three observed magnetic excitations in CeCuAl3, as well as their dependence on momentum transfer and temperature. On the basis of our analysis, we attribute the observed series of magnetic excitations to the existence of a vibron quasibound state.

3.
J Chem Phys ; 130(20): 205101, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19485482

ABSTRACT

In this quasielastic neutron scattering (QENS) study we have investigated the relation between protein and solvent dynamics. Myoglobin in different water:glycerol mixtures has been studied in the temperature range of 260-320 K. In order to distinguish between solvent and protein dynamics we have measured protonated as well as partly deuterated samples. As commonly observed for bulk as well as for confined water, the dynamics of the surrounding solvent is well described by a jump diffusion model. The intermediate scattering function I(Q,t) from the protein (partly deuterated samples) was analyzed by fitting a single Kohlrausch-Williams-Watts (KWW) stretched exponential function to the data. However, due to the limited experimental time window, two different curve fitting approaches were used. The first one was performed with the assumption that I(Q,t) decays to zero at long times, i.e., it was assumed that all protein relaxations that are observed on the experimental time scale, as well as would be observed on longer time scales, can be described by a single KWW function. In the second approach we instead assumed that both the protein relaxation time tau(p) and the stretching parameter beta(KWW) were Q-independent, i.e., we assumed that the protein dynamics is dominated by more local motions. Advantages and disadvantages of both approaches are discussed. The first approach appears to work best at higher Q-values, indicating a power law relation of the Q-dependent protein dynamics for all samples and temperatures, whereas the second approach seems to work at lower Q-values, where the expected confined diffusion of hydrogen atoms in the protein gives the assumed Q-independent relaxation time. Independent of the chosen approach we find a significant correlation between the average relaxation time of the protein and the diffusion constant (or in this case the related relaxation time) of the solvent. However, the correlation is not perfect since the average relaxation time of the protein is more strongly dependent on the total amount of solvent than the diffusion constant of the solvent itself. Thus, the average relaxation time of the protein decreases not only with increasing solvent mobility, but also with increasing solvent content.


Subject(s)
Glycerol/chemistry , Myoglobin/chemistry , Water/chemistry , Neutrons , Proteins/chemistry , Solvents/chemistry
4.
J Phys Condens Matter ; 21(50): 506003, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-21836228

ABSTRACT

We report inelastic and elastic neutron scattering, magnetic susceptibility, and heat capacity measurements for polycrystalline sodium ruthenate (Na(3)RuO(4)). Previous work suggests that this material consists of isolated tetramers of S = 3/2  Ru(5+) ions in a so-called lozenge configuration. Comparisons of magnetic susceptibility and inelastic and elastic neutron scattering results with analytic calculations for several cluster models show that although there may be significant spin-spin correlations within the lozenge cluster, a simple isolated lozenge model is not appropriate for Na(3)RuO(4).

5.
Phys Rev Lett ; 98(21): 215503, 2007 May 25.
Article in English | MEDLINE | ID: mdl-17677785

ABSTRACT

The effects of confining molecular hydrogen within carbon nanohorns are studied via high-resolution quasielastic and inelastic neutron spectroscopies. Both sets of data are remarkably different from those obtained in bulk samples in the liquid and crystalline states. At temperatures where bulk hydrogen is liquid, the spectra of the confined sample show an elastic component indicating a significant proportion of immobile molecules as well as distinctly narrower quasielastic line widths and a strong distortion of the line shape of the para-->ortho rotational transition. The results show that hydrogen interacts far more strongly with such carbonous structures than it does to carbon nanotubes, suggesting that nanohorns and related nanostructures may offer significantly better prospects as lightweight media for hydrogen storage applications.

6.
J Chem Phys ; 126(23): 234509, 2007 Jun 21.
Article in English | MEDLINE | ID: mdl-17600427

ABSTRACT

The collective dynamics of liquid deuterium fluoride are studied by means of high-resolution quasielastic and inelastic neutron scattering over a range of four decades in energy transfer. The spectra show a low-energy coherent quasielastic component which arises from correlated stochastic motions as well as a broad inelastic feature originating from overdamped density oscillations. While these results are at variance with previous works which report on the presence of propagating collective modes, they are fully consistent with neutron diffraction, nuclear magnetic resonance, and infrared/Raman experiments on this prototypical hydrogen-bonded fluid.

7.
Phys Rev Lett ; 98(7): 077801, 2007 Feb 16.
Article in English | MEDLINE | ID: mdl-17359062

ABSTRACT

Quasielastic neutron scattering has been used to investigate the single-particle dynamics of hydrogen fluoride across its entire liquid range at ambient pressure. For T>230 K, translational diffusion obeys the celebrated Stokes-Einstein relation, in agreement with nuclear magnetic resonance studies. At lower temperatures, we find significant deviations from the above behavior in the form of a power law with exponent xi=-0.71+/-0.05. More striking than the above is a complete breakdown of the Debye-Stokes-Einstein relation for rotational diffusion. Our findings provide the first experimental verification of fractional Stokes-Einstein behavior in a hydrogen-bonded liquid, in agreement with recent computer simulations [S. R. Becker, Phys. Rev. Lett. 97, 055901 (2006)10.1103/PhysRevLett.97.055901].


Subject(s)
Hydrogen Bonding , Chemical Phenomena , Chemistry, Physical , Diffusion , Energy Transfer , Spectrometry, Mass, Electrospray Ionization , Temperature
8.
J Phys Condens Matter ; 19(41): 415119, 2007 Oct 17.
Article in English | MEDLINE | ID: mdl-28192331

ABSTRACT

The dynamics of water in fresh and in rehydrated white bread is studied using quasielastic neutron scattering (QENS). A diffusion constant for water in fresh bread, without temperature gradients and with the use of a non-destructive technique, is presented here for the first time. The self-diffusion constant for fresh bread is estimated to be Ds = 3.8 × 10-10 m2 s-1 and the result agrees well with previous findings for similar systems. It is also suggested that water exhibits a faster dynamics than previously reported in the literature using equilibration of a hydration-level gradient monitored by vibrational spectroscopy. The temperature dependence of the dynamics of low hydration bread is also investigated for T = 280-350 K. The average relaxation time at constant momentum transfer (Q) shows an Arrhenius behavior in the temperature range investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...