Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 123(15): 9356-9396, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37486716

ABSTRACT

This Review presents an overview from the perspective of tetrahedral chemistry on various oxide ion-conducting materials containing tetrahedral moieties which have received continuous growing attention as candidates for key components of various devices, including solid oxide fuel cells and oxygen sensors, due to the deformation and rotation flexibility of tetrahedral units facilitating oxide ion transport. Emphasis is placed on the structural and mechanistic features of various systems ranging from crystalline to amorphous materials, which include a variety of gallates, silicates, germanates, molybdates, tungstates, vanadates, aluminates, niobate, titanates, indium oxides, and the newly reported borates. They contain tetrahedral units in either isolated or linked manners forming different polyhedral dimensionality (0 to 3) with various defect properties and transport mechanisms. The development of oxide ion conductors containing tetrahedral moieties and the elucidation of the roles of tetrahedral units in oxide ion migration have demonstrated diverse opportunities for discovering superior electrolytes for solid oxide fuel cells and other related devices and provided useful clues for uncovering the key factors directing fast oxide ion conduction.

2.
Dalton Trans ; 52(16): 5336-5344, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36988586

ABSTRACT

A controlled chemical reduction process was performed on LaCrO3 assisted by CaH2 at a relatively low temperature (773 K), and the impact on the photocatalytic and magnetic properties is discussed. The reduction process leads to the formation of oxygen vacancies that enhance photocatalytic properties by acting as traps that retard the hole/electron recombination processes. In addition, the existence of oxygen defects induces some subtle structural modifications, resulting in Cr-O-Cr angle variation that influences the magnetic behavior of the material. Therefore, the use of a controlled chemical reduction process is an effective method for tunning the physical-chemical properties of transition-metal oxide-based materials, even in cases with high chemical stability.

3.
Inorg Chem ; 61(13): 5413-5424, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35302370

ABSTRACT

The La2O3/SrO/Ga2O3 ternary system contains several compounds with remarkable oxide or proton ionic conduction. Among them, the layered LaSr2(GaO4)O compound is a less commonly studied material. Here, the crystal structure, electrical conduction properties, and ionic migration mechanism of the La1-xSr2+x(GaO4) O1-0.5x (0 ≤ x ≤ 0.3) system are thoroughly analyzed. Diffraction methods indicate that the system crystallizes in the tetragonal space group P4/ncc, which is compatible with the presence of a subtle GaO4 tetrahedral tilting along the c axis, leading to a slight deviation of the body-centered tetragonal structure previously reported. This feature is essential to further understanding the mixed p electronic/oxide ion-conducting behavior of the system. Upon La3+ for Sr2+ substitution, oxygen vacancies arise at the loosely bound oxide sublattice, which at high temperature go through the GaO4 tetrahedral layer, leading to the formation of intermediate corner-sharing Ga2O7 tetrahedral dimers, and migrate via the continuous breaking and re-formation of the dimers, assisted by the synergic rotation and deformation of neighboring GaO4 tetrahedra. The unique structural and electrical features of La1-xSr2+x(GaO4)O1-0.5x materials within the La2O3/SrO/Ga2O3 ternary system emphasize their potential application as cathode materials in LaGaO3-based fuel cells.

4.
Inorg Chem ; 60(7): 4322-4331, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33719424

ABSTRACT

The study of ionic dynamics in solids is essential to understanding and developing modern energy technologies. Here we study the ionic dynamics of orthorhombic Na2MgSiO4, an interesting case of a polar stuffed-cristobalite-type structure that contains two inequivalent Na sites within the channels of the magnesium silicate tetrahedral framework. Its preparation by a solid-state reaction method favors the presence of ∼2% of Na vacancies, converting it into a pure Na ionic conductor with an optimized ionic conductivity of ∼10-5 S cm-1 at 200 °C. The macroscopic migration has been characterized through impedance spectroscopy and molecular dynamics simulation, which proves the pure Na ionic character of the compound through hopping between Na1 and Na2 sites, forming three-dimensional migration zigzag-shaped paths. High-resolution solid-state 23Na magic-angle-spinning (MAS) NMR spectroscopy is employed to characterize the local structure and microscopic dynamics of Na-ion transport in Na2MgSiO4. Remarkably, variable-temperature 23Na MAS NMR and two-dimensional exchange spectroscopy evidence for the first time a Na site exchange phenomenon at room temperature, which further triggers Na ionic conduction at elevated temperatures.

5.
Inorg Chem ; 60(4): 2446-2456, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33535755

ABSTRACT

Mayenite Ca12Al14O33, as an oxide-ion conductor, has the potential of being applied in many fields, such as solid-oxide fuel cells. However, its relatively low oxide-ion conductivity hinders its wide practical applications and thus needs to be further optimized. Herein, a new recently developed glass crystallization route was used to prepare a series of Ga-doped Ca12Al14-xGaxO33 (0 ≤ x ≤ 14) materials, which is not accessible by the traditional solid-state reaction method. Phase evolution with the content of gallium, the corresponding structures, and their electrical properties were studied in detail. The X-ray diffraction data revealed that a pure mayenite phase can be obtained for 0 ≤ x ≤ 7, whereas when x > 7, the samples crystallize into a melilite-like orthorhombic Ca5Ga6O14-based phase. The electrical conduction studies evidence no apparent enhancement in the total conductivity for compositions 0 ≤ x ≤ 7 with the mayenite phase, and therefore, the rigidity of the framework cations and the width of the windows between cages are not key factors for oxide-ion conductivity in mayenite Ca12Al14O33-based materials, and changing the free oxygen content through aliovalent cation substitution may be the right direction. For compositions with a pure melilite-like orthorhombic phase, the conductivities also mirrored each other and are all slightly higher than those of the mayenite phases. These melilite-like Ca5Ga6O14-based materials show mixed Ca-ion, oxide-ion, and electron conduction. Furthermore, the conduction mechanisms of Ca ions and oxide ions in this composition were studied by a bond-valence-based method. The results suggested that Ca-ion conduction is mainly due to the severely underbonded Ca3 ions and that the oxide ions are most likely transported via oxygen vacancies.

6.
Dalton Trans ; 49(46): 16849-16859, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33179669

ABSTRACT

Co-doped hexagonal Sr1-x/2Al2-xSixO4:Eu2+,Dy3+ (0.1 ≤ x ≤ 0.5) transparent ceramics have been elaborated by full glass crystallization. The compositions with low SiO2 content (x ≤ 0.4) require fast quenching conditions to form glass, i.e. specific elaboration processes such as aerodynamic levitation coupled to laser heating, whereas the x = 0.5 glass composition can be prepared on a large scale by the classic melt-quenching method in commercial furnaces. After a single thermal treatment, the resulting SrAl2O4-based transparent ceramics show varying photoluminescence emission properties when x increases. These variations are also observable in persistent luminescence, resulting in an afterglow colour-tuning ranging from green to light blue. Afterglow excitation spectra highlight the possible activation in the visible range of the obtained persistent luminescence. Indeed, persistent luminescence of hexagonal Sr0.75Al1.5Si0.5O4:Eu2+,Dy3+ large transparent ceramics has been successfully charged using a typical smartphone low power white light source. Moreover, thermoluminescence glow curves of samples containing different Dy3+ doping concentrations are studied to gain insights regarding the traps' origin and depth. Coupling thermoluminescence results together with luminescence thermal quenching and band gap calculations appear useful to understand the charge trapping and detrapping evolution with the material composition. Varying the Si-content in hexagonal Sr1-x/2Al2-xSixO4:Eu2+,Dy3+ compounds appears as a promising strategy to obtain transparent materials with tuneable green to light blue persistent luminescence.

7.
Nat Commun ; 9(1): 4484, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30367043

ABSTRACT

Tetrahedral units can transport oxide anions via interstitial or vacancy defects owing to their great deformation and rotation flexibility. Compared with interstitial defects, vacancy-mediated oxide-ion conduction in tetrahedra-based structures is more difficult and occurs rarely. The isolated tetrahedral anion Scheelite structure has showed the advantage of conducting oxygen interstitials but oxygen vacancies can hardly be introduced into Scheelite to promote the oxide ion migration. Here we demonstrate that oxygen vacancies can be stabilized in the BiVO4 Scheelite structure through Sr2+ for Bi3+ substitution, leading to corner-sharing V2O7 tetrahedral dimers, and migrate via a cooperative mechanism involving V2O7-dimer breaking and reforming assisted by synergic rotation and deformation of neighboring VO4 tetrahedra. This finding reveals the ability of Scheelite structure to transport oxide ion through vacancies or interstitials, emphasizing the possibility to develop oxide-ion conductors with parallel vacancy and interstitial doping strategies within the same tetrahedra-based structure type.

8.
Inorg Chem ; 56(23): 14446-14458, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29152977

ABSTRACT

Eu-doped Sr1-x/2Al2-xSixO4 (x = 0.2, 0.4, and 0.5) transparent ceramics have been synthesized by full and congruent crystallization from glasses prepared by aerodynamic levitation and laser-heating method. Structural refinements from synchrotron and neutron powder diffraction data show that the ceramics adopt a 1 × 1 × 2 superstructure compared to the SrAl2O4 hexagonal polymorph. While the observed superstructure reflections indicate a long-range ordering of the Sr vacancies in the structure, 29Si and 27Al solid-state NMR measurements associated with DFT computations reveal a significant degree of disorder in the fully polymerized tetrahedral network. This is evidenced through the presence of Si-O-Si bonds, as well as Si(OAl)4 units at remote distances of the Sr vacancies and Al(OAl)4 units in the close vicinity of Sr vacancies departing from local charge compensation in the network. The transparent ceramics can be doped by europium to induce light emission arising from the volume under UV excitation. Luminescence measurements then reveal the coexistence of Eu2+ and Eu3+ in the samples, thereby allowing tuning the emission color depending on the excitation wavelength and suggesting possible applications such as solid state lighting.

9.
Inorg Chem ; 52(23): 13469-79, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24219499

ABSTRACT

It is well-known that when an RE2Si2O7 matrix is doped with active lanthanide ions, it displays promising luminescent responses for optical applications. The crystalline structure adopted by the silicate matrix as well as the distribution of the dopants among the available RE crystallographic sites have important effects on the luminescent yields of these compounds. The present study is aimed at analyzing the structural behavior as well as the luminescent properties of Ho(3+)-substituted La2Si2O7. Several compositions across the La2Si2O7-Ho2Si2O7 system were synthesized using the sol-gel method followed by calcination at 1600 °C. The resulting powders were analyzed by means of X-ray and neutron diffraction to determine the phase stabilities across the system. The results indicated a solid solubility region of G-(La,Ho)2Si2O7 which extends to the La0.6Ho1.4Si2O7 composition. Compositions richer in Ho(3+) show a two-phase domain (G+δ), while δ-(La,Ho)2Si2O7 is the stable phase for Ho(3+) contents higher than 90% (La0.2Ho1.8Si2O7). Anomalous diffraction data interestingly indicated that the La(3+) for Ho(3+) substitution mechanism in the G-(La,Ho)2Si2O7 polymorph is not homogeneous, but a preferential occupation of Ho(3+) for the RE2 site is observed. The Ho(3+)-doped G-La2Si2O7 phosphors exhibited a strong green luminescence after excitation at 446 nm. Lifetime measurements indicated that the optimum phosphor was that with a Ho(3+) content of 10%.

SELECTION OF CITATIONS
SEARCH DETAIL
...