Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 31(26): e1807742, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30790363

ABSTRACT

Rationally designed artificial materials, called metamaterials, allow for tailoring effective material properties beyond ("meta") the properties of their bulk ingredient materials. This statement is especially true for chiral metamaterials, as unlocking certain degrees of freedom necessarily requires broken centrosymmetry. While the field of chiral electromagnetic/optical metamaterials has become rather mature, the field of elastic/mechanical metamaterials is just emerging and wide open. This research news reviews recent theoretical and experimental progress concerning 3D chiral mechanical and optical metamaterials, with special emphasis on work performed at KIT.

2.
Sci Rep ; 7(1): 14762, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29116251

ABSTRACT

The exact suppression of backscattering from rotationally symmetric objects requires dual symmetric materials where ε r = µ r. This prevents their design at many frequency bands, including the optical one, because magnetic materials are not available. Electromagnetically small non-magnetic spheres of large permittivity offer an alternative. They can be tailored to exhibit balanced electric and magnetic dipole polarizabilities a 1 = b 1, which result in approximate zero backscattering. In this case, the effect is inherently narrowband. Here, we put forward a different alternative that allows broadband functionality: Wavelength-sized spheres made from low permittivity materials. The effect occurs in a parameter regime where approximate duality is met for all multipolar order a n ≈ b n , in a weakly wavelength dependence fashion. In addition, and despite of the low permittivity, the overall scattering response of these spheres is still significant. Scattering patterns are shown to be highly directive across an octave spanning band. The effect is analytically and numerically shown using the Mie coefficients.

3.
Opt Lett ; 42(20): 4075-4078, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-29028016

ABSTRACT

We present an electromagnetic chirality measure for 2D arrays of subwavelength periodicities under normal illumination. The calculation of the measure uses only the complex reflection and transmission coefficients from the array. The measure allows the ordering of arrays according to their electromagnetic chirality, which further allows a quantitative comparison of different design strategies. The measure is upper bounded, and the extreme properties of objects with high values of electromagnetic chirality make them useful in both near- and far-field applications. We analyze the consequences that different possible symmetries of the array have on its electromagnetic chirality. We use the measure to study four different arrays. The results indicate the suitability of helices for building arrays of high electromagnetic chirality, and the low effectiveness of a substrate for breaking the transverse mirror symmetry.

4.
Opt Lett ; 38(11): 1857-9, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23722768

ABSTRACT

We unveil the relationship between two anomalous scattering processes known as Kerker conditions and the duality symmetry of Maxwell equations. We generalize these conditions and show that they can be applied to any particle with cylindrical symmetry, not only to spherical particles as the original Kerker conditions were derived for. We also explain the role of the optical helicity in these scattering processes. Our results find applications in the field of metamaterials, where new materials with directional scattering are being explored.

SELECTION OF CITATIONS
SEARCH DETAIL
...