Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Biol Cell ; 20(14): 3401-13, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19458198

ABSTRACT

Clathrin is involved in vesicle formation in the trans-Golgi network (TGN)/endosomal system and during endocytosis. Clathrin recruitment to membranes is mediated by the clathrin heavy chain (HC) N-terminal domain (TD), which forms a seven-bladed beta-propeller. TD binds membrane-associated adaptors, which have short peptide motifs, either the clathrin-box (CBM) and/or the W-box; however, the importance of the TD binding sites for these motifs has not been tested in vivo. We investigated the importance of the TD in clathrin function by generating 1) mutations in the yeast HC gene (CHC1) to disrupt the binding sites for the CBM and W-box (chc1-box), and 2) four TD-specific temperature-sensitive alleles of CHC1. We found that TD is important for the retention of resident TGN enzymes and endocytosis of alpha-factor; however, the known adaptor binding sites are not necessary, because chc1-box caused little to no effect on trafficking pathways involving clathrin. The Chc1-box TD was able to interact with the endocytic adaptor Ent2 in a CBM-dependent manner, and HCs encoded by chc1-box formed clathrin-coated vesicles. These data suggest that additional or alternative binding sites exist on the TD propeller to help facilitate the recruitment of clathrin to sites of vesicle formation.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Clathrin Heavy Chains/chemistry , Clathrin/chemistry , Clathrin/metabolism , Saccharomyces cerevisiae/metabolism , Alleles , Amino Acid Motifs , Amino Acid Sequence , Aminopeptidases/metabolism , Binding Sites , Chitin Synthase/metabolism , Clathrin Heavy Chains/metabolism , Clathrin-Coated Vesicles/metabolism , Endocytosis , Green Fluorescent Proteins/metabolism , Molecular Sequence Data , Mutation/genetics , Protein Binding , Protein Processing, Post-Translational , Protein Structure, Secondary , Protein Transport , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/metabolism , Temperature , trans-Golgi Network/metabolism
2.
J Cell Biol ; 180(6): 1219-32, 2008 Mar 24.
Article in English | MEDLINE | ID: mdl-18347067

ABSTRACT

Endocytosis in yeast requires actin and clathrin. Live cell imaging has previously shown that massive actin polymerization occurs concomitant with a slow 200-nm inward movement of the endocytic coat (Kaksonen, M., Y. Sun, and D.G. Drubin. 2003. Cell. 115:475-487). However, the nature of the primary endocytic profile in yeast and how clathrin and actin cooperate to generate an endocytic vesicle is unknown. In this study, we analyze the distribution of nine different proteins involved in endocytic uptake along plasma membrane invaginations using immunoelectron microscopy. We find that the primary endocytic profiles are tubular invaginations of up to 50 nm in diameter and 180 nm in length, which accumulate the endocytic coat components at the tip. Interestingly, significant actin labeling is only observed on invaginations longer than 50 nm, suggesting that initial membrane bending occurs before initiation of the slow inward movement. We also find that in the longest profiles, actin and the myosin-I Myo5p form two distinct structures that might be implicated in vesicle fission.


Subject(s)
Actins/metabolism , Cell Membrane/metabolism , Cytoskeleton/metabolism , Myosin Type I/metabolism , Saccharomyces cerevisiae/metabolism , Transport Vesicles/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Cell Membrane/ultrastructure , Endocytosis/physiology , Microscopy, Immunoelectron , Protein Transport/physiology , Saccharomyces cerevisiae/ultrastructure , Transport Vesicles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...