Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
EMBO J ; 42(24): e113941, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38054357

ABSTRACT

The long noncoding RNA (lncRNA) AUXIN-REGULATED PROMOTER LOOP (APOLO) recognizes a subset of target loci across the Arabidopsis thaliana genome by forming RNA-DNA hybrids (R-loops) and modulating local three-dimensional chromatin conformation. Here, we show that APOLO regulates shade avoidance syndrome by dynamically modulating expression of key factors. In response to far-red (FR) light, expression of APOLO anti-correlates with that of its target BRANCHED1 (BRC1), a master regulator of shoot branching in Arabidopsis thaliana. APOLO deregulation results in BRC1 transcriptional repression and an increase in the number of branches. Accumulation of APOLO transcription fine-tunes the formation of a repressive chromatin loop encompassing the BRC1 promoter, which normally occurs only in leaves and in a late response to far-red light treatment in axillary buds. In addition, our data reveal that APOLO participates in leaf hyponasty, in agreement with its previously reported role in the control of auxin homeostasis through direct modulation of auxin synthesis gene YUCCA2, and auxin efflux genes PID and WAG2. We show that direct application of APOLO RNA to leaves results in a rapid increase in auxin signaling that is associated with changes in the plant response to far-red light. Collectively, our data support the view that lncRNAs coordinate shade avoidance syndrome in A. thaliana, and reveal their potential as exogenous bioactive molecules. Deploying exogenous RNAs that modulate plant-environment interactions may therefore become a new tool for sustainable agriculture.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Long Noncoding , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Arabidopsis Proteins/metabolism , Indoleacetic Acids/metabolism , Epigenesis, Genetic , Chromatin/metabolism , Gene Expression Regulation, Plant , Light , Transcription Factors/metabolism
13.
Trends Plant Sci ; 26(5): 509-523, 2021 05.
Article in English | MEDLINE | ID: mdl-33461868

ABSTRACT

Major strides have been made over the past decade in elucidating the mechanisms that mediate shade-avoidance responses. The canonical PHYTOCHROME INTERACTING FACTOR (PIF)-auxin pathway that begins with inactivation of phytochrome B (phyB) by a low red:far-red (R:FR) ratio, and that leads to increased elongation, has been thoroughly characterized in arabidopsis (Arabidopsisthaliana) seedlings. Nevertheless, studies in other life stages and plant species have demonstrated the role of other wavelengths, photoreceptors, and hormones in the orchestration of shade-avoidance responses. We highlight recent developments that illustrate how canopy light cues regulate signaling through auxin, gibberellins (GAs), jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and strigolactones (SLs) to modulate key aspects of plant growth, metabolism, and defense.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Hormones , Light , Phytochrome/metabolism , Phytochrome B/metabolism
14.
Nat Plants ; 6(3): 223-230, 2020 03.
Article in English | MEDLINE | ID: mdl-32170284

ABSTRACT

Growth responses to competition1 and defence responses to the attack of consumer organisms2 are two classic examples of adaptive phenotypic plasticity in plants. However, the mechanistic and functional links between these responses are not well understood. Jasmonates, a family of lipid-derived signals, are potent growth inhibitors and central regulators of plant immunity to herbivores and pathogens3,4, with both roles being evolutionarily conserved from bryophytes5 to angiosperms6. When shade-intolerant plants perceive the proximity of competitors using the photoreceptor phytochrome B, they activate the shade-avoidance syndrome and downregulate jasmonate responses7. Despite the central implications of this light-mediated change in the growth/defence balance for plant adaptation and crop yield8,9, the mechanisms by which photoreceptors relay light cues to the jasmonate signalling pathway remain poorly understood10. Here, we identify a sulfotransferase (ST2a) that is strongly upregulated by plant proximity perceived by phytochrome B via the phytochrome B-phytochrome interacting factor signalling module. By catalysing the formation of a sulfated jasmonate derivative, ST2a acts to reduce the pool of precursors of active forms of jasmonates and represents a direct molecular link between photoreceptors and hormone signalling in plants. The metabolic step defined by this enzyme provides a molecular mechanism for prioritizing shade avoidance over defence under intense plant competition.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , Light , Plant Immunity/genetics , Signal Transduction , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis/immunology , Phytochrome B/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...