Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Methods Cell Biol ; 185: 99-113, 2024.
Article in English | MEDLINE | ID: mdl-38556454

ABSTRACT

Radiotherapy is a crucial treatment modality for cancer patients, with approximately 60% of individuals undergoing ionizing radiation as part of their disease management. In recent years, there has been a growing trend toward minimizing irradiation fields through the use of image-guided dosimetry and innovative technologies. These advancements allow for selective irradiation, delivering higher local doses while reducing the number of treatment sessions. Consequently, computer-assisted methods have significantly enhanced the effectiveness of radiotherapy in the curative and palliative treatment of various cancers. Although radiation therapy alone can effectively achieve local control in some cancer types, it may not be sufficient for others. As a result, further preclinical research is necessary to explore novel approaches including new schedules of radiotherapy treatments. Unfortunately, there is a concerning lack of correlation between clinical outcomes and experiments conducted on mouse models. We hypothesize that this disparity arises from the differences in irradiation strategies employed in preclinical studies compared to those used in clinical practice, which ultimately affects the translatability of findings to patients. In this study, we present two comprehensive radiotherapy protocols for the treatment of orthotopic melanoma and glioblastoma tumors. These protocols utilize a small animal radiation research platform, which is an ideal radiation device for delivering localized and precise X-ray doses to the tumor mass. By employing these platforms, we aim to limit the side effects associated with irradiating healthy surrounding tissues. Our detailed protocols offer a valuable framework for conducting preclinical studies that closely mimic clinical radiotherapy techniques, bridging the gap between experimental results and patient outcomes.


Subject(s)
Glioblastoma , Radiotherapy, Image-Guided , Mice , Humans , Animals , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Glioblastoma/pathology , Glioblastoma/radiotherapy , Disease Models, Animal
2.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373003

ABSTRACT

Bispecific antibodies are a promising type of therapy for the treatment of cancer due to their ability to simultaneously inhibit different proteins playing a role in cancer progression. The development in lung cancer has been singularly intense because of the increasingly vast knowledge of the underlying molecular routes, in particular, in oncogene-driven tumors. In this review, we present the current landscape of bispecific antibodies for the treatment of lung cancer and discuss potential scenarios where the role of these therapeutics might expand in the near future.


Subject(s)
Antibodies, Bispecific , Lung Neoplasms , Humans , Antibodies, Bispecific/therapeutic use , Lung Neoplasms/pathology , Immunotherapy
3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36768997

ABSTRACT

Immunotherapies based on immune checkpoint blockade have shown remarkable clinical outcomes and durable responses in patients with many tumor types. Nevertheless, these therapies lack efficacy in most cancer patients, even causing severe adverse events in a small subset of patients, such as inflammatory disorders and hyper-progressive disease. To diminish the risk of developing serious toxicities, intratumor delivery of monoclonal antibodies could be a solution. Encouraging results have been shown in both preclinical and clinical studies. Thus, intratumor immunotherapy as a new strategy may retain efficacy while increasing safety. This approach is still an exploratory frontier in cancer research and opens up new possibilities for next-generation personalized medicine. Local intratumor delivery can be achieved through many means, but an attractive approach is the use of gene therapy vectors expressing mAbs inside the tumor mass. Here, we summarize basic, translational, and clinical results of intratumor mAb delivery, together with descriptions of non-viral and viral strategies for mAb delivery in preclinical and clinical development. Currently, this is an expanding research subject that will surely play a key role in the future of oncology.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Humans , Antibodies, Monoclonal/therapeutic use , Neoplasms/drug therapy , Immunotherapy/methods , Precision Medicine
4.
Biomedicines ; 10(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36551788

ABSTRACT

Chimeric antigen receptor (CAR)-T adoptive cell therapy is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in haematological malignancies. However, it still lacks efficacy in solid tumours, possibly because engineered T cells become inactive within the immunosuppressive tumour microenvironment (TME). In the TME, cells of the myeloid lineage (M) are among the immunosuppressive cell types with the highest tumour infiltration rate. These cells interact with other immune cells, mediating immunosuppression and promoting angiogenesis. Recently, the development of CAR-M cell therapies has been put forward as a new candidate immunotherapy with good efficacy potential. This alternative CAR strategy may increase the efficacy, survival, persistence, and safety of CAR treatments in solid tumours. This remains a critical frontier in cancer research and opens up a new possibility for next-generation personalised medicine to overcome TME resistance. However, the exact mechanisms of action of CAR-M and their effect on the TME remain poorly understood. Here, we summarise the basic, translational, and clinical results of CAR-innate immune cells and CAR-M cell immunotherapies, from their engineering and mechanistic studies to preclinical and clinical development.

5.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362027

ABSTRACT

PD-L1/PD-1 blockade immunotherapy has changed the therapeutic approaches for the treatment of many cancers. Nevertheless, the mechanisms underlying its efficacy or treatment failure are still unclear. Proficient systemic immunity seems to be a prerequisite for efficacy, as recently shown in patients and in mouse models. It is widely accepted that expansion of anti-tumor CD8 T cell populations is principally responsible for anti-tumor responses. In contrast, the role of CD4 T cells has been less studied. Here we review and discuss the evidence supporting the contribution of CD4 T cells to anti-tumor immunity, especially recent advances linking CD4 T cell subsets to efficacious PD-L1/PD-1 blockade immunotherapy. We also discuss the role of CD4 T cell memory subsets present in peripheral blood before the start of immunotherapies, and their utility as predictors of response.


Subject(s)
B7-H1 Antigen , Immunotherapy , Neoplasms , Animals , Mice , B7-H1 Antigen/antagonists & inhibitors , CD4-Positive T-Lymphocytes , Immunologic Factors , Immunotherapy/methods , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocyte Subsets
6.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077216

ABSTRACT

The number of people that are 65 years old or older has been increasing due to the improvement in medicine and public health. However, this trend is not accompanied by an increase in quality of life, and this population is vulnerable to most illnesses, especially to infectious diseases. Vaccination is the best strategy to prevent this fact, but older people present a less efficient response, as their immune system is weaker due mainly to a phenomenon known as immunosenescence. The adaptive immune system is constituted by two types of lymphocytes, T and B cells, and the function and fitness of these cell populations are affected during ageing. Here, we review the impact of ageing on T and B cells and discuss the approaches that have been described or proposed to modulate and reverse the decline of the ageing adaptive immune system.


Subject(s)
Immunosenescence , Adaptive Immunity , Aged , Aging , Humans , Quality of Life , Vaccination
7.
Int J Mol Sci ; 23(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077278

ABSTRACT

Vaccination, being able to prevent millions of cases of infectious diseases around the world every year, is the most effective medical intervention ever introduced. However, immunosenescence makes vaccines less effective in providing protection to older people. Although most studies explain that this is mainly due to the immunosenescence of T and B cells, the immunosenescence of innate immunity can also be a significant contributing factor. Alterations in function, number, subset, and distribution of blood neutrophils, monocytes, and natural killer and dendritic cells are detected in aging, thus potentially reducing the efficacy of vaccines in older individuals. In this paper, we focus on the immunosenescence of the innate blood immune cells. We discuss possible strategies to counteract the immunosenescence of innate immunity in order to improve the response to vaccination. In particular, we focus on advances in understanding the role and the development of new adjuvants, such as TLR agonists, considered a promising strategy to increase vaccination efficiency in older individuals.


Subject(s)
Immunosenescence , Vaccines , Adjuvants, Immunologic , Aged , Aging , Humans , Immunity, Innate , Vaccination
8.
Cancers (Basel) ; 14(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36010840

ABSTRACT

Single-agent immunotherapy has been widely accepted as frontline treatment for advanced non-small cell lung cancer (NSCLC) with high tumor PD-L1 expression, but most patients do not respond and the mechanisms of resistance are not well known. Several works have highlighted the immunosuppressive activities of myeloid subpopulations, including low-density neutrophils (LDNs), although the context in which these cells play their role is not well defined. We prospectively monitored LDNs in peripheral blood from patients with NSCLC treated with anti-PD-1 immune checkpoint inhibitors (ICIs) as frontline therapy, in a cohort of patients treated with anti-PD1 immunotherapy combined with chemotherapy (CT+IT), and correlated values with outcomes. We explored the underlying mechanisms through ex vivo experiments. Elevated baseline LDNs predict primary resistance to ICI monotherapy in patients with NSCLC, and are not associated with response to CT+IT. Circulating LDNs mediate resistance in NSCLC receiving ICI as frontline therapy through humoral immunosuppression. A depletion of this population with CT+IT might overcome resistance, suggesting that patients with high PD-L1 tumor expression and high baseline LDNs might benefit from this combination. The activation of the HGF/c-MET pathway in patients with elevated LDNs revealed by quantitative proteomics supports potential drug combinations targeting this pathway.

9.
Cells ; 11(15)2022 07 30.
Article in English | MEDLINE | ID: mdl-35954196

ABSTRACT

Immune checkpoint inhibitors (ICIs) have revolutionized medical practice in oncology since the FDA approval of the first ICI 11 years ago. In light of this, Lymphocyte-Activation Gene 3 (LAG-3) is one of the most important next-generation immune checkpoint molecules, playing a similar role as Programmed cell Death protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4). 19 LAG-3 targeting molecules are being evaluated at 108 clinical trials which are demonstrating positive results, including promising bispecific molecules targeting LAG-3 simultaneously with other ICIs. Recently, a new dual anti-PD-1 (Nivolumab) and anti-LAG-3 (Relatimab) treatment developed by Bristol Myers Squibb (Opdualag), was approved by the Food and Drug Administration (FDA) as the first LAG-3 blocking antibody combination for unresectable or metastatic melanoma. This novel immunotherapy combination more than doubled median progression-free survival (PFS) when compared to nivolumab monotherapy (10.1 months versus 4.6 months). Here, we analyze the large clinical trial responsible for this historical approval (RELATIVITY-047), and discuss the preclinical and clinical developments that led to its jump into clinical practice. We will also summarize results achieved by other LAG-3 targeting molecules with promising anti-tumor activities currently under clinical development in phases I, I/II, II, and III. Opdualag will boost the entry of more LAG-3 targeting molecules into clinical practice, supporting the accumulating evidence highlighting the pivotal role of LAG-3 in cancer.


Subject(s)
Melanoma , Nivolumab , Humans , Immunologic Factors/therapeutic use , Immunotherapy/methods , Melanoma/drug therapy , Nivolumab/therapeutic use
10.
Life (Basel) ; 12(4)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35455052

ABSTRACT

Adoptive cell therapy with genetically modified T lymphocytes that express chimeric antigen receptors (CAR-T) is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in hematological malignancies. However, the efficacy of CAR-T cells in solid tumors is still very unsatisfactory, because of the strong immunosuppressive tumor microenvironment that hinders immune responses. The development of next-generation personalized CAR-T cells against solid tumors is a clinical necessity. The identification of therapeutic targets for new CAR-T therapies to increase the efficacy, survival, persistence, and safety in solid tumors remains a critical frontier in cancer immunotherapy. Here, we summarize basic, translational, and clinical results of CAR-T cell immunotherapies in lung cancer, from their molecular engineering and mechanistic studies to preclinical and clinical development.

11.
Int J Mol Sci ; 22(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067904

ABSTRACT

Lymphocyte activation gene 3 (LAG-3) is a cell surface inhibitory receptor with multiple biological activities over T cell activation and effector functions. LAG-3 plays a regulatory role in immunity and emerged some time ago as an inhibitory immune checkpoint molecule comparable to PD-1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. LAG-3 is the third inhibitory receptor to be exploited in human anti-cancer immunotherapies, and it is considered a potential next-generation cancer immunotherapy target in human therapy, right next to PD-1 and CTLA-4. Unlike PD-1 and CTLA-4, the exact mechanisms of action of LAG-3 and its relationship with other immune checkpoint molecules remain poorly understood. This is partly caused by the presence of non-conventional signaling motifs in its intracellular domain that are different from other conventional immunoregulatory signaling motifs but with similar inhibitory activities. Here we summarize the current understanding of LAG-3 signaling and its role in LAG-3 functions, from its mechanisms of action to clinical applications.


Subject(s)
Antigens, CD/metabolism , Antigens, CD/physiology , Signal Transduction/physiology , Humans , Immunotherapy , Lymphocyte Activation , Neoplasms/metabolism , Receptors, Immunologic/metabolism , T-Lymphocytes/immunology , Lymphocyte Activation Gene 3 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...