Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Curr Mol Med ; 21(4): 318-331, 2021.
Article in English | MEDLINE | ID: mdl-32867637

ABSTRACT

Diabetes is a chronic disease characterized by marked alterations in the metabolism of glucose and by high concentrations of glucose in the blood due to a decreased insulin production or resistance to the action of this hormone in peripheral tissues. The International Diabetes Federation estimates a global incidence of diabetes of about 10% in the adult population (20 - 79 years old), some 430 million cases reported worldwide in 2018. It is well documented that people with diabetes have a higher susceptibility to infectious diseases and therefore show higher morbidity and mortality compared to the non-diabetic population. Given that the innate immune response plays a fundamental role in protecting against invading pathogens through a myriad of humoral and cellular mechanisms, the present work makes a comprehensive review of the innate immune alterations in patients with type 2 diabetes mellitus (T2D) as well as a brief description of the molecular events leading or associated to such conditions. We show that in these patients a compromised innate immune response increases susceptibility to infections.


Subject(s)
Diabetes Mellitus, Type 2/complications , Immunity, Innate , Infections/pathology , Animals , Diabetes Mellitus, Type 2/immunology , Humans , Infections/etiology
2.
J Tissue Viability ; 30(1): 51-58, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33139157

ABSTRACT

The aim of the present work was to evaluate MTX treatment (0.1, 1 and 10 µg mL-1) in vitro in order to characterize its effects on cell proliferation alterations in cell cycle of HaCaT keratinocytes and wound healing in a Skh1 mice treated with MTX (low doses 30 mg kg-1, high doses 200 mg kg-1 and repeated doses at 1.5 mg kg-1). We analyzed the cytotoxic effect of methotrexate by a resazurin assay. The effects in the proliferation, cell cycle and apoptosis of HaCaT cells were analyzed by flow cytometry. The effects of MTX on wound healing in vivo were also analyzed. A trend toward reduction in the resazurin assay was found (p > 0.05). Reduced proliferation was also identified in a clonogenic assay and a CFSE assay (p < 0.05) due to the MTX treatment. A reduction in the G2/M and S phases was observed accompanied by apoptosis induction with increased sub G0 phase and annexin V FITC staining. Effect of MTX was evidenced in vivo on the wound closure process after day 10 (p < 0.05) with alterations in tissue architecture and remodeling. There is a marked effect of MTX on wound healing in vivo in Skh1 mice with implications for long-term therapy and surgical interventions.


Subject(s)
Cell Proliferation/drug effects , Keratinocytes/drug effects , Methotrexate/pharmacology , Wound Healing/drug effects , Analysis of Variance , Animals , Apoptosis/drug effects , Disease Models, Animal , Mice , Statistics, Nonparametric
3.
J Diabetes Res ; 2019: 1568457, 2019.
Article in English | MEDLINE | ID: mdl-31915708

ABSTRACT

Type 2 diabetes mellitus (DM2) is strongly associated with other comorbidities such as obesity, atherosclerosis, and hypertension. Obesity is associated with sustained low-grade inflammatory response due to the production of proinflammatory cytokines. This inflammatory process promotes the differentiation of some myeloid cells, including myeloid-derived suppressor cells (MDSCs). In this study, two groups of individuals were included: DM2 patients and non-DM2 individuals with similar characteristics. Immunolabeling of CD15+ CD14- and CD33+ HLA-DR-/low was performed from whole peripheral blood, and samples were analyzed by flow cytometry, and frequencies of MDSCs and the relationship of these with clinical variables, cytokine profile (measured by cytometric bead array), and anthropometric variables were analyzed. The frequency of CD33+ HLA-DR-/low MDSCs (that produce IL-10 and TGF-ß, according to an intracellular detection) is higher in patients with DM2 (P < 0.05), and there is a positive correlation between the frequency of CD15+ CD14- and CD33+ HLA-DR-/low MDSC phenotypes. DM2 patients have an increased concentration of serum IL-5 (P < 0.05). Also, a negative correlation between the frequency of CD15+ CD14- MDSCs and LDL cholesterol was found. Our group of DM2 patients have an increased frequency of mononuclear MDSC CD33+ HLA-DR-/low that produce TGF-ß and IL-10. These cytokines have been associated with immune modulation and reduced T cell responses. DM2 and non-DM2 subjects show a similar cytokine profile, but the DM2 patients have an increased concentration of IL-5.


Subject(s)
Diabetes Mellitus, Type 2/immunology , Hypertension/immunology , Myeloid-Derived Suppressor Cells/immunology , Adult , Female , HLA-DR Antigens/analysis , Humans , Interleukin-10/biosynthesis , Interleukin-5/blood , Male , Middle Aged , Sialic Acid Binding Ig-like Lectin 3/analysis , Transforming Growth Factor beta/biosynthesis
4.
Int Immunopharmacol ; 63: 35-42, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30075427

ABSTRACT

The physiopathology of rheumatoid arthritis (RA) is mediated by proinflammatory cytokines, some of which are regulated by the JAK/STAT pathway. Tofacitinib is a JAK inhibitor, but its role in the regulation of microRNAs (miRNAs) is unknown. There is also no information regarding the role of miRNAs in the clinical relapse/remission of RA. The present project aims to identify a signature profile of miRNA expression in a subgroup of RA patients who had to discontinue tofacitinib treatment (because of the ending of a 5-year open-label clinical trial) and to describe the expression of miRNAs during RA remission or flare-up. The relative expression of 61 miRNAs was determined in serum samples with the Firefly™ BioWorks assay. Statistical analysis was performed by means of Student's t-test and heatmap analysis was performed with Firefly™ Analysis Workbench software and in the software GraphPad® Prism v5.0. Target prediction and Gene Ontology analysis were carried out using bioinformatic tools. We found a distinctive signature of miRNA expression associated with relapse, featuring upregulated expression of hsa­miR­432­5p (p < 0.05). We also found upregulation of hsa­miR­194­5p (p < 0.05) in samples of patients with RA flare-up. Gene Ontology analysis of the target genes for hsa­miR­432­5p was performed to identify relevant pathways associated with relapse; the implications of these pathways in the physiopathology of RA are discussed. Tofacitinib treatment does not have a direct effect on the expression of measured miRNAs. The changes in hsa­miR­432­5p and hsa­miR­194­5p are associated with the regulation of proinflammatory pathways and RA flare-up.


Subject(s)
Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/genetics , MicroRNAs/blood , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Adult , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/drug therapy , Female , Humans , Male , Middle Aged , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL