Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982624

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a sensor of low-molecular-weight molecule signals that originate from environmental exposures, the microbiome, and host metabolism. Building upon initial studies examining anthropogenic chemical exposures, the list of AHR ligands of microbial, diet, and host metabolism origin continues to grow and has provided important clues as to the function of this enigmatic receptor. The AHR has now been shown to be directly involved in numerous biochemical pathways that influence host homeostasis, chronic disease development, and responses to toxic insults. As this field of study has continued to grow, it has become apparent that the AHR is an important novel target for cancer, metabolic diseases, skin conditions, and autoimmune disease. This meeting attempted to cover the scope of basic and applied research being performed to address possible applications of our basic knowledge of this receptor on therapeutic outcomes.


Subject(s)
Autoimmune Diseases , Neoplasms , Humans , Receptors, Aryl Hydrocarbon/metabolism , Universities , Neoplasms/drug therapy , Neoplasms/metabolism , Diet
2.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499247

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.


Subject(s)
Receptors, Aryl Hydrocarbon , Signal Transduction , Receptors, Aryl Hydrocarbon/metabolism , Homeostasis , Xenobiotics , Gene Expression Regulation
3.
Sci Rep ; 12(1): 15446, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104446

ABSTRACT

The liver is among the few organs having the ability to self-regenerate in response to a severe damage compromising its functionality. The Aryl hydrocarbon receptor (Ahr) is a transcription factor relevant for the detoxification of xenobiotics but also largely important for liver development and homeostasis. Hence, liver cell differentiation is developmentally modulated by Ahr through the controlled expression of pluripotency and stemness-inducing genes. Here, 2/3 partial hepatectomy (PH) was used as a clinically relevant approach to induce liver regeneration in Ahr-expressing (Ahr+/+) and Ahr-null (Ahr-/-) mice. Ahr expression and activity were early induced after 2/3 PH to be gradually downmodulated latter during regeneration. Ahr-/- mice triggered liver regeneration much faster than AhR+/+ animals, although both reached full regeneration at the latest times. At initial stages after PHx, earlier regenerating Ahr-/- livers had upregulation of cell proliferation markers and increased activation of signalling pathways related to stemness such as Hippo-YAP and Wnt/ß-catenin, concomitantly with the induction of pro-inflammatory cytokines TNFa, IL6 and p65. These phenotypes, together with the improved metabolic adaptation of Ahr-/- mice after PHx and their induced sustained cell proliferation, could likely result from the expansion of undifferentiated stem cells residing in the liver expressing OCT4, SOX2, KLF4 and NANOG. We propose that Ahr needs to be induced early during regeneration to fine-tune liver regrowth to physiological values. Since Ahr deficiency did not result in liver overgrowth, its transient pharmacological inhibition could serve to improve liver regeneration in hepatectomized and transplanted patients and in those exposed to damaging liver toxins and carcinogens.


Subject(s)
Liver Regeneration , Receptors, Aryl Hydrocarbon , Animals , Basic Helix-Loop-Helix Transcription Factors , Cell Differentiation , Hepatectomy , Liver/metabolism , Liver/surgery , Mice , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
4.
Aging (Albany NY) ; 14(10): 4281-4304, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35619220

ABSTRACT

Aging impairs organismal homeostasis leading to multiple pathologies. Yet, the mechanisms and molecular intermediates involved are largely unknown. Here, we report that aged aryl hydrocarbon receptor-null mice (AhR-/-) had exacerbated cellular senescence and more liver progenitor cells. Senescence-associated markers ß-galactosidase (SA-ß-Gal), p16Ink4a and p21Cip1 and genes encoding senescence-associated secretory phenotype (SASP) factors TNF and IL1 were overexpressed in aged AhR-/- livers. Chromatin immunoprecipitation showed that AhR binding to those gene promoters repressed their expression, thus adjusting physiological levels in AhR+/+ livers. MCP-2, MMP12 and FGF secreted by senescent cells were overproduced in aged AhR-null livers. Supporting the relationship between senescence and stemness, liver progenitor cells were overrepresented in AhR-/- mice, probably contributing to increased hepatocarcinoma burden. These AhR roles are not liver-specific since adult and embryonic AhR-null fibroblasts underwent senescence in culture, overexpressing SA-ß-Gal, p16Ink4a and p21Cip1. Notably, depletion of senescent cells with the senolytic agent navitoclax restored expression of senescent markers in AhR-/- fibroblasts, whereas senescence induction by palbociclib induced an AhR-null-like phenotype in AhR+/+ fibroblasts. AhR levels were downregulated by senescence in mouse lungs but restored upon depletion of p16Ink4a-expressing senescent cells. Thus, AhR restricts age-induced senescence associated to a differentiated phenotype eventually inducing resistance to liver tumorigenesis.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16 , Receptors, Aryl Hydrocarbon , Aging/metabolism , Animals , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Fibroblasts/metabolism , Liver/metabolism , Mice , Receptors, Aryl Hydrocarbon/genetics
5.
Front Cell Dev Biol ; 10: 884004, 2022.
Article in English | MEDLINE | ID: mdl-35465323

ABSTRACT

Transcription factor aryl hydrocarbon receptor (AHR) has emerged as one of the main regulators involved both in different homeostatic cell functions and tumor progression. Being a member of the family of basic-helix-loop-helix (bHLH) transcriptional regulators, this intracellular receptor has become a key member in differentiation, pluripotency, chromatin dynamics and cell reprogramming processes, with plenty of new targets identified in the last decade. Besides this role in tissue homeostasis, one enthralling feature of AHR is its capacity of acting as an oncogene or tumor suppressor depending on the specific organ, tissue and cell type. Together with its well-known modulation of cell adhesion and migration in a cell-type specific manner in epithelial-mesenchymal transition (EMT), this duality has also contributed to the arise of its clinical interest, highlighting a new potential as therapeutic tool, diagnosis and prognosis marker. Therefore, a deregulation of AHR-controlled pathways may have a causal role in contributing to physiological and homeostatic failures, tumor progression and dissemination. With that firmly in mind, this review will address the remarkable capability of AHR to exert a different function influenced by the phenotype of the target cell and its potential consequences.

6.
Stem Cell Reports ; 16(9): 2351-2363, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34478649

ABSTRACT

Mammalian embryogenesis is a complex process controlled by transcription factors that regulate the balance between pluripotency and differentiation. Transcription factor aryl hydrocarbon receptor (AhR) regulates OCT4/POU5F1 and NANOG, both essential controllers of pluripotency, stemness and early embryo development. Molecular mechanisms controlling OCT4/POU5F1 and NANOG during embryogenesis remain unidentified. We show that AhR regulates pluripotency factors and maintains the metabolic activity required for proper embryo differentiation. AhR-lacking embryos (AhR-/-) showed a pluripotent phenotype characterized by a delayed expression of trophectoderm differentiation markers. Accordingly, central pluripotency factors OCT4/POU5F1 and NANOG were overexpressed in AhR-/- embryos at initial developmental stages. An altered intracellular localization of these factors was observed in the absence of AhR and, importantly, Oct4 had an opposite expression pattern with respect to AhR from the two-cell stage to blastocyst, suggesting a negative regulation of OCT4/POU5F by AhR. We propose that AhR is a regulator of pluripotency and differentiation in early mouse embryogenesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Embryonic Development/genetics , Receptors, Aryl Hydrocarbon/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Embryo, Mammalian , Energy Metabolism , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Genotype , Glycolysis , Hippo Signaling Pathway , Mice , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Oxidative Stress , Protein Transport , Receptors, Aryl Hydrocarbon/metabolism
7.
Cancers (Basel) ; 13(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34439225

ABSTRACT

Non-small cell lung adenocarcinoma (NSCLC) bearing K-RasG12D mutations is one of the most prevalent types of lung cancer worldwide. Aryl hydrocarbon receptor (AHR) expression varies in human lung tumors and has been associated with either increased or reduced lung metastasis. In the mouse, Ahr also adjusts lung regeneration upon injury by limiting the expansion of resident stem cells. Here, we show that the loss of Ahr enhances K-RasG12D-driven NSCLC in mice through the amplification of stem cell subpopulations. Consistent with this, we show that K-RasG12D;Ahr-/- lungs contain larger numbers of cells expressing markers for both progenitor Clara (SCGB1A1 and CC10) and alveolar type-II (SFTPC) cells when compared to K-RasG12D;Ahr+/+-driven tumors. They also have elevated numbers of cells positive for pluripotent stem cells markers such as SOX2, ALDH1, EPCAM, LGR5 and PORCN. Typical pluripotency genes Nanog, Sox2 and c-Myc were also upregulated in K-RasG12D;Ahr-/- lung tumors as found by RNAseq analysis. In line with this, purified K-RasG12D/+;Ahr-/- lung cells generate larger numbers of organoids in culture that can subsequently differentiate into bronchioalveolar structures enriched in both pluripotency and stemness genes. Collectively, these data indicate that Ahr antagonizes K-RasG12D-driven NSCLC by restricting the number of cancer-initiating stem cells. They also suggest that Ahr expression might represent a good prognostic marker to determine the progression of K-RasG12D-positive NSCLC patients.

8.
Epigenetics Chromatin ; 13(1): 15, 2020 03 14.
Article in English | MEDLINE | ID: mdl-32169107

ABSTRACT

Transcriptional repression of Nanog is an important hallmark of stem cell differentiation. Chromatin modifications have been linked to the epigenetic profile of the Nanog gene, but whether chromatin organization actually plays a causal role in Nanog regulation is still unclear. Here, we report that the formation of a chromatin loop in the Nanog locus is concomitant to its transcriptional downregulation during human NTERA-2 cell differentiation. We found that two Alu elements flanking the Nanog gene were bound by the aryl hydrocarbon receptor (AhR) and the insulator protein CTCF during cell differentiation. Such binding altered the profile of repressive histone modifications near Nanog likely leading to gene insulation through the formation of a chromatin loop between the two Alu elements. Using a dCAS9-guided proteomic screening, we found that interaction of the histone methyltransferase PRMT1 and the chromatin assembly factor CHAF1B with the Alu elements flanking Nanog was required for chromatin loop formation and Nanog repression. Therefore, our results uncover a chromatin-driven, retrotransposon-regulated mechanism for the control of Nanog expression during cell differentiation.


Subject(s)
Alu Elements , Chromatin Assembly and Disassembly , Nanog Homeobox Protein/genetics , Receptors, Aryl Hydrocarbon/metabolism , CCCTC-Binding Factor/metabolism , Cell Differentiation , Cell Line, Tumor , Chromatin Assembly Factor-1/metabolism , Humans , Nanog Homeobox Protein/metabolism , Protein Binding , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism
9.
FASEB J ; 33(11): 12644-12654, 2019 11.
Article in English | MEDLINE | ID: mdl-31483997

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, largely known for its role in xenobiotic metabolism and detoxification as well as its crucial role as a regulator of inflammation. Here, we have compared a cohort wild-type and AhR-null mice along aging to study the relationship between this receptor and age-associated inflammation, termed as "inflammaging," both at a systemic and the CNS level. Our results show that AhR deficiency is associated with a premature aged phenotype, characterized by early inflammaging, as shown by an increase in plasma cytokines levels. The absence of AhR also promotes the appearance of brain aging anatomic features, such as the loss of the white matter integrity. In addition, AhR-/- mice present an earlier spatial memory impairment and an enhanced astrogliosis in the hippocampus when compared with their age-matched AhR+/+ controls. Importantly, we have found that AhR protein levels decrease with age in this brain structure, strongly suggesting a link between AhR and aging.-Bravo-Ferrer, I., Cuartero, M. I., Medina, V., Ahedo-Quero, D., Peña-Martínez, C., Pérez-Ruíz, A., Fernández-Valle, M. E., Hernández-Sánchez, C., Fernández-Salguero, P. M., Lizasoain, I., Moro, M. A. Lack of the aryl hydrocarbon receptor accelerates aging in mice.


Subject(s)
Aging, Premature , Aging , Hippocampus , Receptors, Aryl Hydrocarbon/deficiency , Aging/genetics , Aging/metabolism , Aging/pathology , Aging, Premature/genetics , Aging, Premature/metabolism , Aging, Premature/pathology , Animals , Female , Hippocampus/metabolism , Hippocampus/pathology , Male , Mice , Mice, Knockout , Receptors, Aryl Hydrocarbon/metabolism , Spatial Memory
10.
Oncogene ; 38(2): 209-227, 2019 01.
Article in English | MEDLINE | ID: mdl-30087437

ABSTRACT

The bidirectional regulation of epithelial-mesenchymal transitions (EMT) is key in tumorigenesis. Rho GTPases regulate this process via canonical pathways that impinge on the stability of cell-to-cell contacts, cytoskeletal dynamics, and cell invasiveness. Here, we report that the Rho GTPase activators Vav2 and Vav3 utilize a new Rac1-dependent and miR-200c-dependent mechanism that maintains the epithelial state by limiting the abundance of the Zeb2 transcriptional repressor in breast cancer cells. In parallel, Vav proteins engage a mir-200c-independent expression prometastatic program that maintains epithelial cell traits only under 3D culture conditions. Consistent with this, the depletion of endogenous Vav proteins triggers mesenchymal features in epithelioid breast cancer cells. Conversely, the ectopic expression of an active version of Vav2 promotes mesenchymal-epithelial transitions using E-cadherin-dependent and independent mechanisms depending on the mesenchymal breast cancer cell line used. In silico analyses suggest that the negative Vav anti-EMT pathway is operative in luminal breast tumors. Gene signatures from the Vav-associated proepithelial and prometastatic programs have prognostic value in breast cancer patients.


Subject(s)
Breast Neoplasms/pathology , MicroRNAs/genetics , Proto-Oncogene Proteins c-vav/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Mice , Proto-Oncogene Proteins c-vav/genetics
11.
iScience ; 4: 44-63, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30240752

ABSTRACT

Aryl hydrocarbon receptor (AhR) deficiency alters tissue homeostasis. However, how AhR regulates organ maturation and differentiation remains mostly unknown. Liver differentiation entails a polyploidization process fundamental for cell growth, metabolism, and stress responses. Here, we report that AhR regulates polyploidization during the preweaning-to-adult mouse liver maturation. Preweaning AhR-null (AhR-/-) livers had smaller hepatocytes, hypercellularity, altered cell cycle regulation, and enhanced proliferation. Those phenotypes persisted in adult AhR-/- mice and correlated with compromised polyploidy, predominance of diploid hepatocytes, and enlarged centrosomes. Phosphatidylinositol-3-phosphate kinase (PI3K), extracellular signal-regulated kinase (ERK), and Wnt/ß-catenin signaling remained upregulated from preweaning to adult AhR-null liver, likely increasing mammalian target of rapamycin (mTOR) activation. Metabolomics revealed the deregulation of mitochondrial oxidative phosphorylation intermediates succinate and fumarate in AhR-/- liver. Consistently, PI3K, ERK, and Wnt/ß-catenin inhibition partially rescued polyploidy in AhR-/- mice. Thus, AhR may integrate survival, proliferation, and metabolism for liver polyploidization. Since tumor cells tend to be polyploid, AhR modulation could have therapeutic value in the liver.

12.
Genome Biol ; 19(1): 55, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29695303

ABSTRACT

BACKGROUND: Animals can show very different behaviors even in isogenic populations, but the underlying mechanisms to generate this variability remain elusive. We use the zebrafish (Danio rerio) as a model to test the influence of histone modifications on behavior. RESULTS: We find that laboratory and isogenic zebrafish larvae show consistent individual behaviors when swimming freely in identical wells or in reaction to stimuli. This behavioral inter-individual variability is reduced when we impair the histone deacetylation pathway. Individuals with high levels of histone H4 acetylation, and specifically H4K12, behave similarly to the average of the population, but those with low levels deviate from it. More precisely, we find a set of genomic regions whose histone H4 acetylation is reduced with the distance between the individual and the average population behavior. We find evidence that this modulation depends on a complex of Yin-yang 1 (YY1) and histone deacetylase 1 (HDAC1) that binds to and deacetylates these regions. These changes are not only maintained at the transcriptional level but also amplified, as most target regions are located near genes encoding transcription factors. CONCLUSIONS: We suggest that stochasticity in the histone deacetylation pathway participates in the generation of genetic-independent behavioral inter-individual variability.


Subject(s)
Biological Variation, Population , Histone Code , Acetylation , Animals , Biological Variation, Population/genetics , Gene Expression , Histone Deacetylase 1/metabolism , Histones/metabolism , Larva/genetics , Larva/metabolism , Larva/physiology , Swimming , YY1 Transcription Factor/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish/physiology , Zebrafish Proteins/metabolism
13.
Cell Chem Biol ; 25(3): 268-278.e4, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29290623

ABSTRACT

Mitochondria are dynamic organelles that produce most of the cellular ATP, and are involved in many other cellular functions such as Ca2+ signaling, differentiation, apoptosis, cell cycle, and cell growth. One key process of mitochondrial dynamics is mitochondrial fusion, which is catalyzed by mitofusins (MFN1 and MFN2) and OPA1. The outer mitochondrial membrane protein MFN2 plays a relevant role in the maintenance of mitochondrial metabolism, insulin signaling, and mutations that cause neurodegenerative disorders. Therefore, modulation of proteins involved in mitochondrial dynamics has emerged as a potential pharmacological strategy. Here, we report the identification of small molecules by high-throughput screen that promote mitochondrial elongation in an MFN1/MFN2-dependent manner. Detailed analysis of their mode of action reveals a previously unknown connection between pyrimidine metabolism and mitochondrial dynamics. Our data indicate a link between pyrimidine biosynthesis and mitochondrial dynamics, which maintains cell survival under stress conditions characterized by loss of pyrimidine synthesis.


Subject(s)
Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Pyrimidines/metabolism , Small Molecule Libraries/pharmacology , Animals , Apoptosis/drug effects , Cell Line , Dihydroorotate Dehydrogenase , Doxorubicin/pharmacology , Electron Transport Complex III/antagonists & inhibitors , Electron Transport Complex III/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Leflunomide/pharmacology , Mice , Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/agonists , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/agonists , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Porins/genetics , Porins/metabolism , Pyrimidines/biosynthesis , RNA, Messenger/metabolism , Transcriptome/drug effects
14.
Pharmacol Ther ; 185: 50-63, 2018 05.
Article in English | MEDLINE | ID: mdl-29258844

ABSTRACT

The aryl hydrocarbon receptor (AhR) is well-known for its major contributions to the cellular responses against environmental toxins and carcinogens. Notably, AhR has also emerged as a key transcription factor controlling many physiological processes including cell proliferation and apoptosis, differentiation, adhesion and migration, pluripotency and stemness. These novel functions have broadened our understanding of the signalling pathways and molecular intermediates interacting with AhR under both homeostatic and pathological conditions. Recent discoveries link AhR with the function of essential organs such as liver, skin and gonads, and with complex organismal structures including the immune and cardiovascular systems. The identification of potential endogenous ligands able to regulate AhR activity, opens the possibility of designing ad hoc molecules with pharmacological and/or therapeutic value to treat human diseases in which AhR may have a causal role. Integration of experimental data from in vitro and in vivo studies with "omic" analyses of human patients affected with cancer, immune diseases, inflammation or neurological disorders will likely contribute to validate the clinical relevance of AhR and the possible benefits of modulating its activity by pharmacologically-driven strategies. In this review, we will highlight signalling pathways involved in human diseases that could be targetable by AhR modulators and discuss the feasibility of using such molecules in therapy. The pros and cons of AhR-aimed approaches will be also mentioned.


Subject(s)
Receptors, Aryl Hydrocarbon/metabolism , Animals , Epigenesis, Genetic , Genetic Variation , Humans , Neoplasms/genetics , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction
15.
Stem Cell Res ; 25: 61-71, 2017 12.
Article in English | MEDLINE | ID: mdl-29107893

ABSTRACT

Recent experimental evidences from cellular systems and from mammalian and non-mammalian animal models highlight novel functions for the aryl hydrocarbon/dioxin receptor (AhR) in maintaining cell differentiation and tissue homeostasis. Notably, AhR depletion stimulates an undifferentiated and pluripotent phenotype likely associated to a mesenchymal transition in epithelial cells and to increased primary tumorigenesis and metastasis in melanoma. In this work, we have used a lung model of epithelial regeneration to investigate whether AhR regulates proper tissue repair by adjusting the expansion of undifferentiated stem-like cells. AhR-null mice developed a faster and more efficient repair of the lung bronchiolar epithelium upon naphthalene injury that required increased cell proliferation and the earlier activation of stem-like Clara, Basal and neuroepithelial cells precursors. Increased basal content in multipotent Sca1+/CD31-/CD4- cells and in cells expressing pluripotency factors NANOG and OCT4 could also improve re-epithelialization in AhR-null lungs. The reduced response of AhR-deficient lungs to Sonic Hedgehog (Shh) repression shortly after injury may also help their improved bronchiolar epithelium repair. These results support a role for AhR in the regenerative response against toxins, and open the possibility of modulating its activation level to favor recovery from lesions caused by environmental contaminants.


Subject(s)
Lung/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Cell Differentiation , Cells, Cultured , Lung/drug effects , Lung/physiology , Mice , Naphthalenes/toxicity , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Aryl Hydrocarbon/genetics
16.
Sci Rep ; 7(1): 10420, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874739

ABSTRACT

The aryl hydrocarbon receptor (AhR) has roles in cell proliferation, differentiation and organ homeostasis, including the liver. AhR depletion induces undifferentiation and pluripotency in normal and transformed cells. Here, AhR-null mice (AhR-/-) were used to explore whether AhR controls liver regeneration and carcinogenesis by restricting the expansion of stem-like cells and the expression of pluripotency genes. Short-term CCl4 liver damage was earlier and more efficiently repaired in AhR-/- than in AhR+/+ mice. Stem-like CK14 + and TBX3 + and pluripotency-expressing OCT4 + and NANOG + cells expanded sooner in AhR-/- than in AhR+/+ regenerating livers. Stem-like side population cells (SP) isolated from AhR-/- livers had increased ß-catenin (ß-Cat) signaling with overexpression of Axin2, Dkk1 and Cyclin D1. Interestingly, ß-Cat, Axin2 and Dkk1 also increased during regeneration but more notably in AhR-null livers. Liver carcinogenesis induced by diethylnitrosamine (DEN) produced large carcinomas in all AhR-/- mice but mostly premalignant adenomas in less than half of AhR+/+ mice. AhR-null tumoral tissue, but not their surrounding non-tumoral parenchyma, had nuclear ß-Cat and Axin2 overexpression. OCT4 and NANOG were nevertheless similarly expressed in AhR+/+ and AhR-/- lesions. We suggest that AhR may serve to adjust liver repair and to block tumorigenesis by modulating stem-like cells and ß-Cat signaling.


Subject(s)
Cell Transformation, Neoplastic/genetics , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Liver Neoplasms/etiology , Liver Neoplasms/prevention & control , Liver Regeneration/genetics , Receptors, Aryl Hydrocarbon/genetics , Animals , Biomarkers , Cell Transformation, Neoplastic/metabolism , Chemical and Drug Induced Liver Injury/complications , Chemical and Drug Induced Liver Injury/pathology , Diethylnitrosamine/adverse effects , Disease Models, Animal , Disease Progression , Immunophenotyping , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Knockout , Receptors, Aryl Hydrocarbon/metabolism
17.
Open Biol ; 6(12)2016 12.
Article in English | MEDLINE | ID: mdl-28003471

ABSTRACT

Previous studies suggested that the aryl hydrocarbon receptor (AhR) contributes to mice reproduction and fertility. However, the mechanisms involved remain mostly unknown. Retrotransposon silencing by Piwi-interacting RNAs (piRNAs) is essential for germ cell maturation and, remarkably, AhR has been identified as a regulator of murine B1-SINE retrotransposons. Here, using littermate AhR+/+ and AhR-/- mice, we report that AhR regulates the general course of spermatogenesis and oogenesis by a mechanism likely to be associated with piRNA-associated proteins, piRNAs and retrotransposons. piRNA-associated proteins MVH and Miwi are upregulated in leptotene to pachytene spermatocytes with a more precocious timing in AhR-/- than in AhR+/+ testes. piRNAs and transcripts from B1-SINE, LINE-1 and IAP retrotransposons increased at these meiotic stages in AhR-null testes. Moreover, B1-SINE transcripts colocalize with MVH and Miwi in leptonema and pachynema spermatocytes. Unexpectedly, AhR-/- males have increased sperm counts, higher sperm functionality and enhanced fertility than AhR+/+ mice. In contrast, piRNA-associated proteins and B1-SINE and IAP-derived transcripts are reduced in adult AhR-/- ovaries. Accordingly, AhR-null female mice have lower numbers of follicles when compared with AhR+/+ mice. Thus, AhR deficiency differentially affects testis and ovary development possibly by a process involving piRNA-associated proteins, piRNAs and transposable elements.


Subject(s)
Argonaute Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , DEAD-box RNA Helicases/genetics , Ovary/metabolism , Receptors, Aryl Hydrocarbon/genetics , Retroelements/genetics , Testis/metabolism , Animals , Argonaute Proteins/metabolism , DEAD-box RNA Helicases/metabolism , Female , Fertility , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Male , Meiosis , Mice , RNA, Small Interfering/metabolism , Up-Regulation
19.
Nat Immunol ; 17(8): 985-96, 2016 08.
Article in English | MEDLINE | ID: mdl-27376471

ABSTRACT

The activation marker CD69 is expressed by skin γδ T cells. Here we found that CD69 controlled the aryl hydrocarbon receptor (AhR)-dependent secretion of interleukin 22 (IL-22) by γδ T cells, which contributed to the development of psoriasis induced by IL-23. CD69 associated with the aromatic-amino-acid-transporter complex LAT1-CD98 and regulated its surface expression and uptake of L-tryptophan (L-Trp) and the intracellular quantity of L-Trp-derived activators of AhR. In vivo administration of L-Trp, an inhibitor of AhR or IL-22 abrogated the differences between CD69-deficient mice and wild-type mice in skin inflammation. We also observed LAT1-mediated regulation of AhR activation and IL-22 secretion in circulating Vγ9(+) γδ T cells of psoriatic patients. Thus, CD69 serves as a key mediator of the pathogenesis of psoriasis by controlling LAT1-CD98-mediated metabolic cues.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Lectins, C-Type/metabolism , Psoriasis/immunology , Skin/immunology , T-Lymphocyte Subsets/immunology , Th17 Cells/immunology , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+L , Animals , Antigens, CD/genetics , Antigens, Differentiation, T-Lymphocyte/genetics , Cells, Cultured , Endocytosis , Fusion Regulatory Protein-1/metabolism , Interleukin-23/immunology , Interleukins/metabolism , Lectins, C-Type/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Interleukin-22
20.
Front Cell Dev Biol ; 4: 45, 2016.
Article in English | MEDLINE | ID: mdl-27243009

ABSTRACT

Traditionally considered as a critical intermediate in the toxic and carcinogenic response to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), the Aryl hydrocarbon/Dioxin receptor (AhR) has proven to be also an important regulator of cell physiology and organ homeostasis. AhR has become an interesting and actual area of research mainly boosted by a significant number of recent studies analyzing its contribution to the proper functioning of the immune, hepatic, cardiovascular, vascular and reproductive systems. At the cellular level, AhR establishes functional interactions with signaling pathways governing cell proliferation and cell cycle, cell morphology, cell adhesion and cell migration. Two exciting new aspects in AhR biology deal with its implication in the control of cell differentiation and its more than likely involvement in cell pluripotency and stemness. In fact, it is possible that AhR could help modulate the balance between differentiation and pluripotency in normal and transformed tumor cells. At the molecular level, AhR regulates an increasingly large array of physiologically relevant genes either by traditional transcription-dependent mechanisms or by unforeseen processes involving genomic insulators, chromatin dynamics and the transcription of mobile genetic elements. AhR is also closely related to epigenetics, not only from the point of view of target gene expression but also with respect to its own regulation by promoter methylation. It is reasonable to consider that deregulation of these many functions could have a causative role, or at least contribute to, human disease. Consequently, several laboratories have proposed that AhR could be a valuable tool as diagnostic marker and/or therapeutic target in human pathologies. An additional point of interest is the possibility of regulating AhR activity by endogenous non-toxic low weight molecules agonist or antagonist molecules that could be present or included in the diet. In this review, we will address these molecular and functional features of AhR biology within physiological and pathological contexts.

SELECTION OF CITATIONS
SEARCH DETAIL
...