Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
FEBS J ; 291(4): 722-743, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947039

ABSTRACT

Physiologically, renal medullary cells are surrounded by a hyperosmolar interstitium. However, different pathological situations can induce abrupt changes in environmental osmolality, causing cell stress. Therefore, renal cells must adapt to survive in this new condition. We previously demonstrated that, among the mechanisms involved in osmoprotection, renal cells upregulate triglyceride biosynthesis (which helps preserve glycerophospholipid synthesis and membrane homeostasis) and cyclooxygenase-2 (which generates prostaglandins from arachidonic acid) to maintain lipid metabolism in renal tissue. Herein, we evaluated whether hyperosmolality modulates phospholipase A2 (PLA2 ) activity, leading to arachidonic acid release from membrane glycerophospholipid, and investigated its possible role in hyperosmolality-induced triglyceride synthesis and accumulation. We found that hyperosmolality induced PLA2 expression and activity in Madin-Darby canine kidney cells. Cytosolic PLA2 (cPLA2) inhibition, but not secreted or calcium-independent PLA2 (sPLA2 or iPLA2 , respectively), prevented triglyceride synthesis and reduced cell survival. Inhibition of prostaglandin synthesis with indomethacin not only failed to prevent hyperosmolality-induced triglyceride synthesis but also exacerbated it. Similar results were observed with the peroxisomal proliferator activated receptor gamma (PPARγ) agonist rosiglitazone. Furthermore, hyperosmolality increased free intracellular arachidonic acid levels, which were even higher when prostaglandin synthesis was inhibited by indomethacin. Blocking PPARγ with GW-9662 prevented the effects of both indomethacin and rosiglitazone on triglyceride synthesis and even reduced hyperosmolality-induced triglyceride synthesis, suggesting that arachidonic acid may stimulate triglyceride synthesis through PPARγ activation. These results highlight the role of cPLA2 in osmoprotection, since it is essential to provide arachidonic acid, which is involved in PPARγ-regulated triglyceride synthesis, thus guaranteeing cell survival.


Subject(s)
PPAR gamma , Prostaglandins , Animals , Dogs , PPAR gamma/genetics , Arachidonic Acid/metabolism , Rosiglitazone , Osmotic Pressure , Phospholipases A2 , Indomethacin , Homeostasis , Glycerophospholipids , Triglycerides
2.
Life Sci ; 319: 121544, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36871933

ABSTRACT

AIMS: Calcium oxalate (Oxa), constituent of most common kidney stones, damages renal tubular epithelial cells leading to kidney disease. Most in vitro studies designed to evaluate how Oxa exerts its harmful effects were performed in proliferative or confluent non-differentiated renal epithelial cultures; none of them considered physiological hyperosmolarity of renal medullary interstitium. Cyclooxygenase 2 (COX2) has been associated to Oxa deleterious actions; however, up to now, it is not clear how COX2 acts. In this work, we proposed an in vitro experimental system resembling renal differentiated-epithelial cells that compose medullary tubular structures which were grown and maintained in a physiological hyperosmolar environment and evaluated whether COX2 â†’ PGE2 axis (COX2 considered a cytoprotective protein for renal cells) induces Oxa damage or epithelial restitution. MAIN METHODS: MDCK cells were differentiated with NaCl hyperosmolar medium for 72 h where cells acquired the typical apical and basolateral membrane domains and a primary cilium. Then, cultures were treated with 1.5 mM Oxa for 24, 48, and 72 h to evaluate epithelial monolayer restitution dynamics and COX2-PGE2 effect. KEY FINDINGS: Oxa completely turned the differentiated phenotype into mesenchymal one (epithelial-mesenchymal transition). Such effect was partially and totally reverted after 48 and 72 h, respectively. Oxa damage was even deeper when COX2 was blocked by NS398. PGE2 addition restituted the differentiated-epithelial phenotype in a time and concentration dependence. SIGNIFICANCE: This work presents an experimental system that approaches in vitro to in vivo renal epithelial studies and, more important, warns about NSAIDS use in patients suffering from kidney stones.


Subject(s)
Calcium Oxalate , Kidney Calculi , Calcium Oxalate/chemistry , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Epithelial Cells/metabolism , Kidney Calculi/chemistry , Madin Darby Canine Kidney Cells , Animals , Dogs
3.
Methods Mol Biol ; 2378: 169-187, 2022.
Article in English | MEDLINE | ID: mdl-34985700

ABSTRACT

The unfolded protein response (UPR) is a complex network of intracellular pathways that transmits signals from ER lumen and/or ER bilayer to the nuclear compartment in order to activate gene transcription. UPR is activated by the loss of ER capacities, known as ER stress, and occurs to restore ER properties. In this regard, glycerolipid (GL) synthesis activation contributes to ER membrane homeostasis and IRE1α-XBP1, one UPR pathway, has a main role in lipogenic genes transcription. Herein, we describe the strategy and methodology used to evaluate whether IRE1α-XBP1 pathway regulates lipid metabolism in renal epithelial cells subjected to hyperosmolar environment. XBP1s activity was hindered by blocking IRE1α RNAse activity and by impeding its expression; under these conditions, we determined GL synthesis and lipogenic enzymes expression.


Subject(s)
Endoribonucleases , Protein Serine-Threonine Kinases , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Lipids , Protein Serine-Threonine Kinases/genetics , Unfolded Protein Response , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
4.
Liver Int ; 41(7): 1677-1693, 2021 07.
Article in English | MEDLINE | ID: mdl-33641248

ABSTRACT

BACKGROUND AND AIMS: Non-alcoholic fatty liver (NAFLD) and its more serious form non-alcoholic steatohepatitis increase risk of hepatocellular carcinoma (HCC). Lipid metabolic alterations and its role in HCC development remain unclear. SPARC (Secreted Protein, Acidic and Rich in Cysteine) is involved in lipid metabolism, NAFLD and diabetes, but the effects on hepatic lipid metabolism and HCC development is unknown. The aim of this study was to evaluate the role of SPARC in HCC development in the context of NAFLD. METHODS: Primary hepatocyte cultures from knockout (SPARC-/- ) or wild-type (SPARC+/+ ) mice, and HepG2 cells were used to assess the effects of free fatty acids on lipid accumulation, expression of lipogenic genes and de novo triglyceride (TG) synthesis. A NAFLD-HCC model was stabilized on SPARC-/- or SPARC+/+ mice. Correlations among SPARC, lipid metabolism-related gene expression patterns and clinical prognosis were studied using HCC gene expression dataset. RESULTS: SPARC-/- mice increases hepatic lipid deposits over time. Hepatocytes from SPARC-/- mice or inhibition of SPARC by an antisense adenovirus in HepG2 cells resulted in increased TG deposit, expression of lipid-related genes and nuclear translocation of SREBP1c. Human HCC database analysis revealed that SPARC negatively correlated with genes involved in lipid metabolism, and with poor survival. In NAFLD-HCC murine model, the absence of SPARC accelerates HCC development. RNA-seq study revealed that pathways related to lipid metabolism, cellular detoxification and proliferation were upregulated in SPARC-/- tumour-bearing mice. CONCLUSIONS: The absence of SPARC is associated with an altered hepatic lipid metabolism, and an accelerated NAFLD-related HCC development.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Carcinoma, Hepatocellular/metabolism , Lipid Metabolism , Lipids , Liver/metabolism , Liver Neoplasms/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Osteonectin/genetics , Osteonectin/metabolism
5.
Heliyon ; 6(11): e05396, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33294652

ABSTRACT

The functional renal epithelium is composed of differentiated and polarized tubular cells with a strong actin cortex and specialized cell-cell junctions. If, under pathological conditions, these cells have to resist higher kidney osmolarity, they need to activate diverse mechanisms to survive external nephrotoxic agents such as inflammation and oxidative stress. Wine pomace polyphenols exert protective effects on renal cells. In this study, two wine-pomace products and their protective effects upon promotion and preservation of normal cell differentiation and attenuation of oxalate-induced type II epithelial mesenchymal transition (EMT) are evaluated. Treatment with gastrointestinal and colonic bioavailable fractions from red (rWPP) and white (wWPP) wine pomaces, both in the presence and the absence of oxalate, showed similar cell numbers and nuclear size than the non-treated differentiated MDCK cells. Immunofluorescence analysis showed the reduction of morphological changes and the preservation of cellular junctions for the rWPP and wWPP pre-treatment of cells exposed to oxalate injury. Hence, both rWPP and wWPP attenuated oxalate type II EMT in MDCK cells that conserved their epithelial morphology and cellular junctions through the antioxidant activities of grape pomace polyphenols.

6.
Article in English | MEDLINE | ID: mdl-31927142

ABSTRACT

In renal cells, hyperosmolarity can induce cellular stress or differentiation. Both processes require active endoplasmic reticulum (ER)-associated protein synthesis. Lipid biosynthesis also occurs at ER surface. We showed that hyperosmolarity upregulates glycerophospholipid (GP) and triacylglycerol (GL-TG) de novo synthesis. Considering that massive synthesis of proteins and/or lipids may drive to ER stress, herein we evaluated whether hyperosmolar environment induces ER stress and the participation of inositol-requiring enzyme 1α (IRE1α)-XBP1 in hyperosmotic-induced lipid synthesis. Treatment of Madin-Darby canine kidney (MDCK) cells with hyperosmolar medium triggered ER stress-associated unfolded protein response (UPR). Hyperosmolarity significantly increased xbp1 mRNA and protein as function of time; 24 h of treatment raised the spliced form of XBP1 protein (XBP1s) and induced its translocation to nuclear compartment where it can act as a transcription factor. XBP1 silencing or IRE1α ribonuclease (RNAse) inhibition impeded the expression of lipin1, lipin2 and diacylglycerol acyl transferase-1 (DGAT1) enzymes which yielded decreased GL-TG synthesis. The lack of XBP1s also decreased sterol regulatory element binding protein (SREBP) 1 and 2. Together our data demonstrate that hyperosmolarity induces IRE1α â†’ XBP1s activation; XBP1s drives the expression of SREBP1 and SREBP2 which in turn regulates the expression of the lipogenic enzymes lipin1 (LPIN1) and 2 (LPIN2) and DGAT1. We also demonstrated for the first time that tonicity-responsive enhancer binding protein (TonEBP), the master regulator of osmoprotective response, regulates XBP1 expression. Thus, XBP1 acts as an osmoprotective protein since it is activated by high osmolarity and upregulates lipid metabolism, membranes generation and the restoration of ER homeostasis.


Subject(s)
Kidney/metabolism , Lipogenesis , Osmoregulation , X-Box Binding Protein 1/metabolism , Animals , Dogs , Endoplasmic Reticulum Stress , Kidney/cytology , Madin Darby Canine Kidney Cells , Osmotic Pressure , RNA, Messenger/genetics , Up-Regulation , X-Box Binding Protein 1/genetics
7.
Atherosclerosis ; 288: 51-59, 2019 09.
Article in English | MEDLINE | ID: mdl-31323462

ABSTRACT

BACKGROUND AND AIMS: Epicardial adipose tissue (EAT) is a visceral AT, surrounding myocardium and coronary arteries. Its volume is higher in Type 2 diabetic (DM2) patients, associated with cardiovascular disease risk. Lipoprotein lipase (LPL) hydrolyses triglycerides (TG) from circulating lipoproteins, supplying fatty acids to AT, contributing to its expansion. We aimed to evaluate LPL expression and activity in EAT from DM2 and no DM2 patients, and its regulators ANGPTL4, GPIHBP1 and PPARγ levels, together with VLDLR expression and EAT LPL association with VLDL characteristics. METHODS: We studied patients undergoing coronary by-pass graft (CABG) divided into CABG-DM2 (n = 21) and CABG-noDM2 (n = 29), and patients without CABG (No CABG, n = 30). During surgery, EAT and subcutaneous AT (SAT) were obtained, in which LPL activity, gene and protein expression, its regulators and VLDLR protein levels were determined. Isolated circulating VLDLs were characterized. RESULTS: EAT LPL activity was higher in CABG-DM2 compared to CABG-noDM2 and No CABG (p=0.002 and p<0.001) and in CABG-noDM2 compared to No CABG (p=0.02), without differences in its expression. ANGPTL4 levels were higher in EAT from No CABG compared to CABG-DM2 and CABG-noDM2 (p<0.001). GPIHBP1 levels were higher in EAT from CABG-DM2 and CABG-noDM2 compared to No CABG (p= 0.04). EAT from CABG-DM2 presented higher PPARγ levels than CABG-noDM2 and No CABG (p=0.02 and p=0.03). No differences were observed in VLDL composition between groups, although EAT LPL activity was inversely associated with VLDL-TG and TG/protein index (p<0.05). CONCLUSIONS: EAT LPL regulation would be mainly post-translational. The higher LPL activity in DM2 could be partly responsible for the increase in EAT volume.


Subject(s)
Angiopoietin-Like Protein 4/analysis , Diabetes Mellitus, Type 2/enzymology , Intra-Abdominal Fat/enzymology , Lipoprotein Lipase/analysis , Receptors, Lipoprotein/analysis , Adiposity , Aged , Case-Control Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/physiopathology , Enzyme Activation , Fatty Acids/blood , Female , Humans , Intra-Abdominal Fat/physiopathology , Lipoproteins, VLDL/blood , Male , Middle Aged , PPAR gamma/metabolism , Pericardium , Receptors, LDL/analysis , Triglycerides/blood
8.
Biochim Biophys Acta Biomembr ; 1861(10): 182993, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31132336

ABSTRACT

Mutations in the ATP13A2 gene (PARK9, CLN12, OMIM 610513) were initially associated with a form of Parkinson's Disease (PD) known as Kufor Rakeb Syndrome (KRS). However, the genetic spectrum of ATP13A2-associated disorders was expanded in the last years, because it has been found to underlay variants of neuronal ceroid-lipofuscinoses (NCLs) and hereditary spastic paraplegia. As ATP13A2 seems to be a key component of the endo-lysosome pathway, the fact that these pathologies are commonly characterized by endo-lysosomal dysfunction is not surprising. Here we report that increasing the level of functional ATP13A2 in a stable SH-SY5Y cell line disrupts lipid homeostasis. ATP13A2 overexpression increases the fluorescence intensity of the fluorescent analog phosphatidylethanolamine (NBD-PE) and the formation of multilamellar bodies, resembling the so-called "drug-induced phospholipidosis". We also found that expression of ATP13A2 reduces the ceramide-fluorescence intensity and the content of bis(monoacylglyceryl)phosphate (BMP). BMP is required for lipid degradation and exosome biogenesis inside acidic compartments, so this result suggests that ATP13A2 may be modifying the lipid digestion capacity and/or the redistribution of lipids in these subcellular organelles. In addition, ATP13A2-overexpression decreased the total content of triglycerides (TGs), cholesterol and lipid droplets. As TGs are necessary for the synthesis of new membranes, this observation suggests that increasing the function of ATP13A2 switches the endo-lysosomal system towards vesicle secretion.


Subject(s)
Phospholipids/metabolism , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/metabolism , Cell Line, Tumor , Cholesterol/metabolism , Endosomes/metabolism , Homeostasis , Humans , Lipid Metabolism , Lysosomes/metabolism , Monoglycerides/metabolism , Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Phosphatidylethanolamines/metabolism , Triglycerides/metabolism
9.
Lipids ; 53(10): 993-1003, 2018 10.
Article in English | MEDLINE | ID: mdl-30592063

ABSTRACT

Lipoprotein lipase (LPL) and endothelial lipase (EL) are involved in lipoprotein metabolism. In insulin-resistance, their behavior is altered. Peroxisome proliferator-activated receptors (PPAR) and apoproteins (apo)CII and CIII could be partly responsible for these alterations. To evaluate this response, we assessed Lpl and Lipg expression, protein levels, and enzyme activity in adipose tissue (AT) and heart in an obesity model. Besides, we assessed the role of PPAR and apoC. Male Wistar rats were fed with standard diet (Control, n = 14) or high-fat diet (HFD, n = 14) for 14 weeks. Glucose and lipoprotein profiles were measured. Histological studies were performed in heart and epididymal AT. Lpl and Lipg were assessed by reverse transcription polymerase chain reaction (RT-qPCR), protein levels by Western Blot, and activities by radiometric assays. Cardiac and AT PPAR expression were measured by Western Blot and hepatic Apoc2 and Apoc3 mRNA by RT-qPCR. In HFD, fat deposits were observed in hearts, whereas AT presented a higher adipocyte size. In heart and AT, no differences were found in Lipg mRNA between groups, while AT Lpl mRNA and LPL protein were decreased in HFD, without differences in heart. In both tissues, EL protein levels and activity were increased and inversely associated with decreased LPL activity, being partially responsible for the atherogenic lipoprotein profile in HFD. PPARγ expression in AT was decreased in HFD, without differences in cardiac PPARδ expression and hepatic apoC mRNA. The increase in EL activity could be an alternative pathway for fatty acid release from lipoproteins and uptake in tissues with decreased LPL activity. In AT, PPARγ could be involved in enzyme regulation.


Subject(s)
Fatty Acids/metabolism , Lipase/metabolism , Lipoproteins/metabolism , Obesity/metabolism , Signal Transduction , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Male , Obesity/etiology , Obesity/pathology , Rats, Wistar
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1108-1120, 2018 09.
Article in English | MEDLINE | ID: mdl-29908368

ABSTRACT

Hyperosmolarity is a controversial signal for renal cells. It can induce cell stress or differentiation and both require an active lipid metabolism. We showed that hyperosmolarity upregulates phospholipid (PL) de novo synthesis in renal cells. PL synthesis requires fatty acids (FA), usually stored as triglycerides (TAG). PL and TAG de novo synthesis utilize the same initial biosynthetic route: sn-glycerol 3P (G3P) → phosphatidic acid (PA) → diacylglycerol (DAG). In the present work, we evaluate how such pathway contributes to PL and TAG synthesis in renal cells subjected to hyperosmolarity. Our results show an increase in PA and DAG formation under hyperosmotic conditions; augmented DAG production, due to lipin enzyme activity, lead to the increase of both TAG and PL. However, at early stages (24 and 48 h), most of the de novo synthesized DAG was directed to PL synthesis; longer treatments downregulated PL synthesis and the DAG formed was mainly driven to TAG synthesis. Hyperosmolarity induced ACC and FASN transcription which mediated FA de novo synthesis. New FA molecules were stored in TAG. Silencing experiments revealed that hyperosmotic-induction of lipin-1 and -2 was mediated by SREBP1. Interestingly, SREBP1 knockdown also dropped SREBP2, indicating a modulatory action between both isoforms. Impairing SREBP activity leads to a decline in TAG levels but not PL. Membrane homeostasis is maintained through the adequate PL synthesis and renewal and constitute a protective mechanism against hyperosmolarity. The present data reveal the relevance of TAG synthesis and storage for PL synthesis in renal cells.


Subject(s)
Cell Membrane/drug effects , Gene Expression Regulation/drug effects , Homeostasis/drug effects , Osmotic Pressure , Sodium Chloride/pharmacology , Triglycerides/biosynthesis , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Cell Membrane/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Diglycerides/metabolism , Dogs , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Fatty Acids/metabolism , Homeostasis/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Madin Darby Canine Kidney Cells , Osmolar Concentration , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidic Acids/metabolism , Phospholipids/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism
11.
Heliyon ; 4(12): e01072, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30603705

ABSTRACT

NF-κB and TonEBP belong to the Rel-superfamily of transcription factors. Several specific stimuli, including hypertonicity which is a key factor for renal physiology, are able to activate them. It has been reported that, after hypertonic challenge, NF-κB activity can be modulated by TonEBP, considered as the master regulator of transcriptional activity in the presence of changes in environmental tonicity. In the present work we evaluated whether hypertonicity-induced gene transcription mediated by p65/RelA and TonEBP occurs by an independent action of each transcription factor or by acting together. To do this, we evaluated the expression of their specific target genes and cyclooxygenase-2 (COX-2), a common target of both transcription factors, in the renal epithelial cell line Madin-Darby canine kidney (MDCK) subjected to hypertonic environment. The results herein indicate that hypertonicity activates the Rel-family transcription factors p65/RelA and TonEBP in MDCK cells, and that both are required for hypertonic induction of COX-2 and of their specific target genes. In addition, present data show that p65/RelA modulates TonEBP expression and both colocalize in nuclei of hypertonic cultures of MDCK cells. Thus, a sequential and synchronized action p65/RelA → TonEBP would be necessary for the expression of hypertonicity-induced protective genes.

12.
Biochim Biophys Acta ; 1801(11): 1184-94, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20647050

ABSTRACT

Phosphatidylcholine (PtdCho) is the most abundant phospholipid in eukaryotic membranes and its biosynthetic pathway is generally controlled by CTP:Phosphocholine Cytidylyltransferase (CCT), which is considered the rate-limiting enzyme. CCT is an amphitropic protein, whose enzymatic activity is commonly associated with endoplasmic reticulum (ER) translocation; however, most of the enzyme is intranuclearly located. Here we demonstrate that CCTα is concentrated in the nucleoplasm of MDCK cells. Confocal immunofluorescence revealed that extracellular hypertonicity shifted the diffuse intranuclear distribution of the enzyme to intranuclear domains in a foci pattern. One population of CCTα foci colocalised and interacted with lamin A/C speckles, which also contained the pre-mRNA processing factor SC-35, and was resistant to detergent and salt extraction. The lamin A/C silencing allowed us to visualise a second more labile population of CCTα foci that consisted of lamin A/C-independent foci non-resistant to extraction. We demonstrated that CCTα translocation is not restricted to its redistribution from the nucleus to the ER and that intranuclear redistribution must thus be considered. We suggest that the intranuclear organelle distribution of CCTα is a novel mechanism for the regulation of enzyme activity.


Subject(s)
Cell Nucleus/metabolism , Choline-Phosphate Cytidylyltransferase/physiology , Enzymes/chemistry , Phosphatidylcholines/biosynthesis , Animals , Cell Line , Choline-Phosphate Cytidylyltransferase/chemistry , Cytoplasm/metabolism , Dogs , Endoplasmic Reticulum/metabolism , Gene Silencing , Lamin Type A/chemistry , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Protein Transport , Time Factors
13.
Am J Physiol Renal Physiol ; 297(5): F1181-91, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19759271

ABSTRACT

Focal adhesions (FAs) are structures of cell attachment to the extracellular matrix. We previously demonstrated that the intrarenal hormone bradykinin (BK) induces the restructuring of FAs in papillary collecting duct cells by dissipation of vinculin, but not talin, from FAs through a mechanism that involves PLCbeta activation, and that it also induces actin cytoskeleton reorganization. In the present study we investigated the mechanism by which BK induces the dissipation of vinculin-stained FAs in collecting duct cells. We found that BK induces the internalization of vinculin by a noncaveolar and independent pinocytic pathway and that at least a fraction of this protein is delivered to the recycling endosomal compartment, where it colocalizes with the transferrin receptor. Regarding the reassembly of vinculin-stained FAs, we found that BK induces the formation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-enriched vinculin-containing vesicles, which, by following a polarized exocytic route, transport vinculin to the site of FA assembly, an action that depends on actin filaments. The present study, which was carried out with cells that were not genetically manipulated, shows for the first time that BK induces the formation of vesicle-like structures containing vinculin and PtdIns(4,5)P2, which transport vinculin to the site of FA assembly. Therefore, the modulation of the formation of these vesicle-like structures could be a physiological mechanism through which the cell can reuse the BK-induced internalized vinculin to be delivered for newly forming FAs in renal papillary collecting duct cells.


Subject(s)
Bradykinin/pharmacology , Kidney Tubules, Collecting/metabolism , Phosphatidylinositol Phosphates/metabolism , Vinculin/metabolism , Animals , Caveolin 1/metabolism , Endocytosis/drug effects , Focal Adhesions/drug effects , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/drug effects , Male , Microscopy, Fluorescence , Phosphatidylinositol 4,5-Diphosphate , Pinocytosis/drug effects , Rats , Rats, Wistar , Receptor, Bradykinin B2/drug effects , Signal Transduction/drug effects
14.
Lipids ; 43(4): 343-52, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18288513

ABSTRACT

Focal contacts (FC) are membrane-associated multi-protein complexes that mediate cell-extracellular matrix (ECM) adhesion. FC complexes are inserted in detergent-resistant membrane microdomains enriched in phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2); however, the influence of membrane lipid composition in the preservation of FC structures has not been extensively addressed. In the present work, we studied the contribution of membrane lipids to the preservation of renal epithelial cell adhesion structures. We biochemically characterized the lipid composition of membrane-containing FC complexes. By using cholesterol and PtdIns(4,5)P2)affecting agents, we demonstrated that such agents did not affect any particular type of lipid but induced the formation of new FC-containing domains of completely different lipid composition. By using both biochemical approaches and fluorescence microscopy we demonstrated that phospholipid composition plays an essential role in the in vivo maintenance of FC structures involved in cell-ECM adhesion.


Subject(s)
Epithelial Cells/metabolism , Extracellular Matrix/physiology , Membrane Lipids/chemistry , Animals , Cell Adhesion , Epithelial Cells/cytology , Focal Adhesions/metabolism , Focal Adhesions/ultrastructure , Kidney Medulla/cytology , Male , Membrane Lipids/metabolism , Microscopy, Fluorescence , Rats , Rats, Wistar
15.
Am J Physiol Renal Physiol ; 294(3): F603-13, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18160628

ABSTRACT

Focal adhesions (FAs) are specialized regions of cell attachment to the extracellular matrix. Previous works have suggested that bradykinin (BK) can modulate cell-matrix interaction. In the present study, we used a physiological cellular model to evaluate the potential role of BK in modulating FAs and stress fibers. We performed a quantitative morphometric analysis of FAs in primary cultured rat renal papillary collecting duct cells, which included size, axial ratio (shape), and average length. After 1, 5, or 10 min of incubation with BK, cultured cells were immunostained and analyzed by confocal microscopy. Although the shape of FAs was not altered, BK induced a decrease in the number of vinculin-stained FAs per cell, and a decrease in both their size and their average length, but not in talin-containing FAs, thus suggesting that BK could be inducing a restructuring of FAs. BK also induced a remodeling of the actin filament assemblies rather than their dissipation. Since we have previously demonstrated that BK stimulates activation of PLCbeta in rat renal papillae, we attempted to determine whether BK can modulate FA restructuring by this mechanism, by pretreating cultured cells with the PLCbeta inhibitor U73122. The present study, performed under physiological conditions with cells that were not genetically manipulated, provides new experimental evidence supporting the notion that the intrarenal hormone BK modulates FAs and actin cytoskeleton organization through a mechanism that involves the activation of PLCbeta. We propose this finding as a novel mechanism for BK modulation of tubular collecting duct function.


Subject(s)
Bradykinin/physiology , Focal Adhesions/physiology , Kidney Tubules, Collecting/cytology , Stress Fibers/metabolism , Animals , Cells, Cultured , Male , Phospholipase C beta/metabolism , Rats , Rats, Wistar , Talin/metabolism , Vinculin/metabolism
16.
Biochem Biophys Res Commun ; 364(3): 443-9, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18028879

ABSTRACT

Lamin A/C is the most studied nucleoskeletal constituent. Lamin A/C expression indicates cell differentiation and is also a structural component of nuclear speckles, which are involved in gene expression regulation. Hypertonicity has been reported to induce renal epithelial cell differentiation and expression of TonEBP (NFAT5), a transcriptional activator of hypertonicity-induced gene transcription. In this paper, we investigate the effect of hypertonicity on lamin A/C expression in MDCK cells and the involvement of TonEBP. Hypertonicity increased lamin A/C expression and its distribution to nucleoplasm with speckled pattern. Microscopy showed codistribution of TonEBP and lamin A/C in nucleoplasmic speckles, and immunoprecipitation demonstrated their interaction. TonEBP silencing caused lamin A/C redistribution from nucleoplasmic speckles to the nuclear rim, followed by lamin decrease, thus showing that hypertonicity induces lamin A/C speckles through a TonEBP-dependent mechanism. We suggest that lamin A/C speckles could serve TonEBP as scaffold thus favoring its role in hypertonicity.


Subject(s)
Cell Nucleus Structures/drug effects , Cell Nucleus Structures/metabolism , Hypertonic Solutions/pharmacology , Lamin Type A/biosynthesis , Lamin Type A/metabolism , NFATC Transcription Factors/metabolism , Trans-Activators/metabolism , Animals , Cell Line , Dogs , Gene Silencing/drug effects , Immunoprecipitation , Protein Transport/drug effects
17.
Biochem Biophys Res Commun ; 320(4): 1055-62, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15249196

ABSTRACT

Previous works from our laboratory demonstrated that PGD(2) modulates phosphatidylcholine (PC) biosynthesis in renal papillary tissue. In the present work, we have evaluated the mechanism by which PGD(2) exerts this action. PGD(2) caused two stimulatory waves in PC synthesis which were reproduced by its full-agonist BW245C. At 1min stimulation, PGD(2) increased PC synthesis by 131%; this increase was blocked by neomycin and ethanol, cheleritrine and U0126, PLD, PKC, and MEK1/2 inhibitors, respectively. A second PC synthesis increase (100%) was observed after 15min, which was blocked by PLD inhibitors. PGD(2) also increased phospho-ERK1/2 MAPK in a biphasic-fashion, which was abolished by PLC and PKC inhibitors but not by ethanol, which overincreased phospho-ERK1/2, suggesting that PGD(2)-induced ERK1/2 activation requires previous PLC-PKC activation while PLD down-regulates it. Our results indicate that PGD(2) stimulatory effect involves both PLD and ERK1/2-MAPK activation, and both pathways operate independently of PC synthesis homeostasis.


Subject(s)
Homeostasis/physiology , Kidney Medulla/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylcholines/biosynthesis , Phospholipase D/metabolism , Prostaglandin D2/pharmacology , Animals , Cell Membrane/metabolism , Culture Techniques , Enzyme Activation/drug effects , Homeostasis/drug effects , Humans , Kidney Medulla/drug effects , Male , Metabolic Clearance Rate , Mitogen-Activated Protein Kinase 1/drug effects , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/drug effects , Phospholipase D/drug effects , Rats , Rats, Wistar
18.
Biochem Pharmacol ; 67(2): 245-54, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-14698037

ABSTRACT

Phosphatidylcholine (PC) is the major membrane phospholipid in mammalian cells. Previous works from our laboratory demonstrated a close metabolic relationship between the maintenance of PC biosynthesis and the prostaglandins endogenously synthesized by cyclooxygenase (COX) in rat renal papilla. In the present work, we studied the COX isoform involved in papillary PC biosynthesis regulation. The incorporation of [methyl-3H]choline and [32P]orthophosphate to PC was determined in the absence and presence of SC-560 and NS-398, COX-1 and COX-2 specific inhibitors. PC synthesis was highly sensitive to COX-2 inhibition, while COX-1 inhibition only reduced PC synthesis at high SC-560 concentration. The analysis of choline-containing metabolites showed that COX-2 inhibition affected the formation of CDP-choline intermediary. The evaluation of PC biosynthetic enzymes revealed that microsomal, as well as nuclear, CTP:phosphocholine cytidylyltransferase (CCT), and nuclear-CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CTP) activities were affected by COX-2 inhibition. The addition of exogenous prostaglandin D(2) (PGD(2)) restored nuclear-CCT and -CPT activities but not microsomal CCT. Papillary synthesis of PGD(2) was only detected in nuclear fraction where it was blocked by COX-2 inhibitor NS-398, but not by COX-1 inhibitor. All together, the present results demonstrated that COX-2-mediated PGD(2) synthesis is a PC biosynthesis regulator in rat renal papilla. Considering the importance of the maintenance of PC biosynthesis for the preservation of cell membrane homeostasis to ensure cell viability, and the extensive use of COX-2 inhibitors in therapeutics, the present results could have great pharmacological implications, and can constitute a biochemical explanation for the nephrotoxic effect of non-steroidal anti-inflammatory drugs.


Subject(s)
Isoenzymes/metabolism , Kidney Medulla/metabolism , Phosphatidylcholines/biosynthesis , Prostaglandin D2/biosynthesis , Prostaglandin-Endoperoxide Synthases/metabolism , Animals , Choline-Phosphate Cytidylyltransferase/metabolism , Cyclooxygenase 2 , Diacylglycerol Cholinephosphotransferase/metabolism , Male , Rats , Rats, Wistar
19.
Biochim Biophys Acta ; 1583(2): 185-94, 2002 Jul 11.
Article in English | MEDLINE | ID: mdl-12117562

ABSTRACT

Phosphatidylcholine (PC) is the most abundant phospholipid in mammalian cell membranes. Several lines of evidence support that PC homeostasis is preserved by the equilibrium between PC biosynthetic enzymes and phospholipases catabolic activities. We have previously shown that papillary synthesis of PC depends on prostaglandins (PGs) that modulate biosynthetic enzymes. In papillary tissue, under bradikynin stimulus, arachidonic acid (AA) mobilization (the substrate for PG synthesis) requires a previous phospholipase C (PLC) activation. Thus, in the present work, we study the possible involvement of PLC in PC biosynthesis and its relationship with PG biosynthetic pathway on the maintenance of phospholipid renewal in papillary membranes; we also evaluated the relevance of CDP-choline pathway enzymes compartmentalization. To this end, neomycin, U-73122 and dibutiryl cyclic AMP, reported as PLC inhibitors, were used to study PC synthesis in rat renal papilla. All the PLC inhibitors assayed impaired PC synthesis. PG synthesis was also blocked by PLC inhibitors without affecting cyclooxygenase activity, indicating a metabolic connection between both pathways. However, we found that PC biosynthesis decrease in the presence of PLC inhibitors was not a consequence of PG decreased synthesis, suggesting that basal PLC activity and PGs exert their effect on different targets of PC biosynthetic pathway. The study of PC biosynthetic enzymes showed that PLC inhibitors affect CTP:phosphocholine cytidylyltransferase (CCT) activity while PGD(2) operates on CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT), both activities associated to papillary enriched-nuclei fraction. The present results suggest that renal papillary PC synthesis is a highly regulated process under basal conditions. Such regulation might occur at least at two different levels of the CDP-choline pathway: on the one hand, PLC operates on CCT activity; on the other, while PGs regulate CPT activity.


Subject(s)
Choline-Phosphate Cytidylyltransferase/metabolism , Diacylglycerol Cholinephosphotransferase/metabolism , Kidney/metabolism , Phosphatidylcholines/biosynthesis , Prostaglandin D2/pharmacology , Type C Phospholipases/antagonists & inhibitors , Animals , Bucladesine/pharmacology , Culture Techniques , Estrenes/pharmacology , Male , Neomycin/pharmacology , Prostaglandins/biosynthesis , Prostaglandins/pharmacology , Pyrrolidinones/pharmacology , Rats , Rats, Wistar
20.
Biochem Pharmacol ; 63(3): 507-14, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11853701

ABSTRACT

In the present paper, we investigated the effect of angiotensin-(1-7) (Ang-(1-7)) on phospholipid biosynthesis in the rat renal cortex. A significant increase in phosphatidylcholine (PC) labeling was observed when cortical slices, prelabeled with [32P]orthophosphate, were incubated for 30 min in the presence of Ang-(1-7) (1 pM to 100 nM). Neither the phospholipase C inhibitors, neomycin or db-cAMP nor the protein kinase C inhibitors, chelerythrine or H7, modified the stimulatory effect induced by 0.1 nM Ang-(1-7). The enhancement of PC biosynthesis caused by 0.1 nM Ang-(1-7) was unmodified by either losartan, an AT(1) receptor antagonist, or (1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazol[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate) (PD 123319), an AT(2) receptor antagonist, but was partially blocked by [D-Ala(7)]Ang-(1-7), an Ang-(1-7) specific antagonist. However, losartan potentiated the effect of 100 nM Ang-(1-7) on PC biosynthesis. Losartan by itself increased the de novo synthesis of PC. These results suggest that the Ang-(1-7)-mediated increase in PC biosynthesis is independent of AT(1) and AT(2) receptor activation but mediated by a specific Ang-(1-7) receptor. This mechanism is independent of phospholipase C and PKC activation.


Subject(s)
Angiotensin I/pharmacology , Kidney Cortex/drug effects , Peptide Fragments/pharmacology , Phosphatidylcholines/biosynthesis , Angiotensin Receptor Antagonists , Animals , Kidney Cortex/metabolism , Male , Phospholipids/biosynthesis , Rats , Rats, Wistar , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL