Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(2008): 20231514, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37817602

ABSTRACT

There is an active debate concerning the association of handedness and spatial ability. Past studies used small sample sizes. Determining the effect of handedness on spatial ability requires a large, cross-cultural sample of participants and a navigation task with real-world validity. Here, we overcome these challenges via the mobile app Sea Hero Quest. We analysed the navigation performance from 422 772 participants from 41 countries and found no reliable evidence for any difference in spatial ability between left- and right-handers across all countries. A small but growing gap in performance appears for participants over 64 years old, with left-handers outperforming right-handers. Further analysis, however, suggests that this gap is most likely due to selection bias. Overall, our study clarifies the factors associated with spatial ability and shows that left-handedness is not associated with either a benefit or a deficit in spatial ability.


Subject(s)
Functional Laterality , Spatial Navigation , Humans , Middle Aged
2.
Cognition ; 236: 105443, 2023 07.
Article in English | MEDLINE | ID: mdl-37003236

ABSTRACT

Despite extensive research on navigation, it remains unclear which features of an environment predict how difficult it will be to navigate. We analysed 478,170 trajectories from 10,626 participants who navigated 45 virtual environments in the research app-based game Sea Hero Quest. Virtual environments were designed to vary in a range of properties such as their layout, number of goals, visibility (varying fog) and map condition. We calculated 58 spatial measures grouped into four families: task-specific metrics, space syntax configurational metrics, space syntax geometric metrics, and general geometric metrics. We used Lasso, a variable selection method, to select the most predictive measures of navigation difficulty. Geometric features such as entropy, area of navigable space, number of rings and closeness centrality of path networks were among the most significant factors determining the navigational difficulty. By contrast a range of other measures did not predict difficulty, including measures of intelligibility. Unsurprisingly, other task-specific features (e.g. number of destinations) and fog also predicted navigation difficulty. These findings have implications for the study of spatial behaviour in ecological settings, as well as predicting human movements in different settings, such as complex buildings and transport networks and may aid the design of more navigable environments.


Subject(s)
Space Perception , Spatial Navigation , Humans , Entropy , Spatial Behavior , Cognition , Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...