Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Immunology ; 12(6): e1455, 2023.
Article in English | MEDLINE | ID: mdl-37360982

ABSTRACT

Objectives: Inflammasomes induce maturation of the inflammatory cytokines IL-1ß and IL-18, whose activity is associated with the pathophysiology of a wide range of infectious and inflammatory diseases. As validated therapeutic targets for the treatment of acute and chronic inflammatory diseases, there has been intense interest in developing small-molecule inhibitors to target inflammasome activity and reduce disease-associated inflammatory burden. Methods: We examined the therapeutic potential of a novel small-molecule inhibitor, and associated derivatives, termed ADS032 to target and reduce inflammasome-mediated inflammation in vivo. In vitro, we characterised ADS032 function, target engagement and specificity. Results: We describe ADS032 as the first dual NLRP1 and NLRP3 inhibitor. ADS032 is a rapid, reversible and stable inflammasome inhibitor that directly binds both NLRP1 and NLRP3, reducing secretion and maturation of IL-1ß in human-derived macrophages and bronchial epithelial cells in response to the activation of NLPR1 and NLRP3. ADS032 also reduced NLRP3-induced ASC speck formation, indicative of targeting inflammasome formation. In vivo, ADS032 reduced IL-1ß and TNF-α levels in the serum of mice challenged i.p. with LPS and reduced pulmonary inflammation in an acute model of lung silicosis. Critically, ADS032 protected mice from lethal influenza A virus challenge, displayed increased survival and reduced pulmonary inflammation. Conclusion: ADS032 is the first described dual inflammasome inhibitor and a potential therapeutic to treat both NLRP1- and NLRP3-associated inflammatory diseases and also constitutes a novel tool that allows examination of the role of NLRP1 in human disease.

2.
Fish Shellfish Immunol ; 136: 108638, 2023 May.
Article in English | MEDLINE | ID: mdl-36842638

ABSTRACT

Fish erythrocytes remain nucleated, unlike mammalian erythrocytes that undergo enucleation during maturation. Besides oxygen transport, fish erythrocytes are capable of several immune defence processes and thus these cells are candidates for carrying out ETotic responses. ETosis is an evolutionarily conserved innate immune defence process found in both vertebrates and invertebrates, which involves the extrusion of DNA studded with antimicrobial effector proteins into the extracellular space that traps and kills microorganisms. In this present report, we demonstrate that erythrocytes from Danio rerio (zebrafish) produce ETotic-like responses when exposed to both chemical and physiological inducers of ETosis. Furthermore, erythrocytes from Salmo salar (Atlantic salmon) behaved in a similar way. We have termed these ET-like formations, as Fish Erythrocyte Extracellular Traps (FEETs). Several inducers of mammalian ETosis, such as the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin, induced FEETs. Moreover, we found that FEETs depend on the activation of PKC and generation of mitochondrial reactive oxygen species (mROS). This present report is the first demonstration that fish erythrocytes can exhibit ETotic-like responses, unveiling a previously unknown function, which sheds new light on the innate immune arsenal of these cells.


Subject(s)
Extracellular Traps , Animals , Zebrafish , Erythrocytes/metabolism , Mammals
3.
J Inflamm (Lond) ; 19(1): 19, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36376979

ABSTRACT

Cancer is a complex pathological disease and the existing strategies for introducing chemotherapeutic agents have restricted potential due to a lack of cancer cell targeting specificity, cytotoxicity, bioavailability, and induction of multi-drug resistance. As a prospective strategy in tackling cancer, regulating the inflammatory pyroptosis cell death pathway has been shown to successfully inhibit the proliferation and metastasis of various cancer cell types. Activation of inflammasomes such as the NLRP3 results in pyroptosis through cleavage of gasdermins, which forms pores in the cell membranes, inducing membrane breakage, cell rupture, and death. Furthermore, pyroptotic cells release pro-inflammatory cytokines such as IL-1ß and IL-18 along with various DAMPs that prime an auxiliary anti-tumor immune response. Thus, regulation of pyroptosis in cancer cells is a way to enhance their immunogenicity. However, immune escape involving myeloid-derived suppressor cells has limited the efficacy of most pyroptosis-based immunotherapy strategies. In this review, we comprehensively summarize the cellular and molecular mechanisms involved in the inflammasome-mediated pyroptosis pathways in cancer cells, exploring how it could modulate the tumor microenvironment and be beneficial in anti-cancer treatments. We discuss various existing therapeutic strategies against cancer, including immunotherapy, oncolytic virus therapy, and nanoparticle-based therapies that could be guided to trigger and regulate pyroptosis cell death in cancer cells, and reduce tumor growth and spread. These pyroptosis-based cancer therapies may open up fresh avenues for targeted cancer therapy approaches in the future and their translation into the clinic.

4.
Endocrinology ; 157(6): 2479-88, 2016 06.
Article in English | MEDLINE | ID: mdl-27145015

ABSTRACT

The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship.


Subject(s)
Sertoli Cells/metabolism , Testis/metabolism , Testosterone/blood , Testosterone/metabolism , Animals , Cells, Cultured , Germ Cells/cytology , Germ Cells/metabolism , Gonadotropins/pharmacology , Leydig Cells/drug effects , Leydig Cells/metabolism , Male , Mice , Microvessels/metabolism , Real-Time Polymerase Chain Reaction , Sertoli Cells/drug effects , Spermatogenesis/drug effects , Spermatogenesis/physiology , Testis/cytology , Testis/drug effects
5.
PLoS Pathog ; 7(10): e1002340, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22046137

ABSTRACT

Trypanosomatid parasites are notorious for the human diseases they cause throughout Africa and South America. However, non-pathogenic trypanosomatids are also found worldwide, infecting a wide range of hosts. One example is Trypanosoma (Megatrypanum) theileri, a ubiquitous protozoan commensal of bovids, which is distributed globally. Exploiting knowledge of pathogenic trypanosomatids, we have developed Trypanosoma theileri as a novel vehicle to deliver vaccine antigens and other proteins to cattle. Conditions for the growth and transfection of T. theileri have been optimised and expressed heterologous proteins targeted for secretion or specific localisation at the cell interior or surface using trafficking signals from Trypanosoma brucei. In cattle, the engineered vehicle could establish in the context of a pre-existing natural T. theileri population, was maintained long-term and generated specific immune responses to an expressed Babesia antigen at protective levels. Building on several decades of basic research into trypanosomatid pathogens, Trypanosoma theileri offers significant potential to target multiple infections, including major cattle-borne zoonoses such as Escherichia coli, Salmonella spp., Brucella abortus and Mycobacterium spp. It also has the potential to deliver therapeutics to cattle, including the lytic factor that protects humans from cattle trypanosomiasis. This could alleviate poverty by protecting indigenous African cattle from African trypanosomiasis.


Subject(s)
Cattle Diseases/immunology , Parasitic Diseases, Animal/immunology , Trypanosoma/immunology , Trypanosomiasis, Bovine/immunology , Vaccination/veterinary , Zoonoses , Animals , Cattle , Cattle Diseases/prevention & control , Cells, Cultured , Trypanosoma/genetics , Trypanosoma/pathogenicity , Trypanosomiasis, Bovine/parasitology , Vaccines, Synthetic/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...