Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 39(6): 1501-1511, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28551882

ABSTRACT

This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 µg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 µg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 µg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 µg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.


Subject(s)
Endemic Diseases , Goiter/etiology , Soil/chemistry , Adult , Aged , Female , Food Chain , Goiter/epidemiology , Hot Temperature , Humans , Humic Substances/analysis , Hydrogen-Ion Concentration , Iodine/analysis , Male , Middle Aged , Oxidation-Reduction , Risk Factors , Selenium/analysis , Sri Lanka/epidemiology , Surveys and Questionnaires , Water/chemistry
2.
J Phys Condens Matter ; 25(20): 205601, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23612444

ABSTRACT

Nematicity is a well-known property of liquid crystals and has been recently discussed in the context of strongly interacting electrons. An electronic nematic phase has been seen in many experiments in certain strongly correlated materials, in particular, in the pseudogap phase generic to many hole-doped cuprate superconductors. Recent measurements in high Tc superconductors have shown that even if the lattice is perfectly rotationally symmetric, the ground state can still have strongly nematic local properties. Our study of the two-dimensional one-band Hubbard model provides strong support for the recent experimental results on local rotational C4 symmetry breaking. The variational cluster approach is used here to show the possibility of an electronic nematic state and the proximity of the underlying symmetry-breaking ground state within the Hubbard model. We identify this nematic phase in the overdoped region and show that the local nematicity decreases with increasing electron filling. Our results also indicate that strong Coulomb interaction may drive the nematic phase into a phase similar to the stripe structure. The calculated spin (magnetic) correlation function in momentum space shows the effects resulting from real-space nematicity.

3.
Ultramicroscopy ; 109(8): 1066-73, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19398274

ABSTRACT

Electron charge and spin pairing instabilities in various cluster geometries for attractive and repulsive electrons are studied exactly under variation of interaction strength, electron doping and temperature. The exact diagonalization, level crossing degeneracies, spin-charge separation and separate condensation of paired electron charge and opposite spins yield intriguing insights into the origin of magnetism, ferroelectricity and superconductivity seen in inhomogeneous bulk nanomaterials and various phenomena in cold fermionic atoms in optical lattices. Phase diagrams resemble a number of inhomogeneous, coherent and incoherent nanoscale phases found recently in high-T(c) cuprates, manganites and multiferroic nanomaterials probed by scanning tunneling microscopy. Separate condensation of electron charge and spin degrees at various crossover temperatures offers a new route for superconductivity, different from the BCS scenario. The calculated phase diagrams resemble a number of inhomogeneous paired phases, superconductivity, ferromagnetism and ferroelectricity found in Nb and Co nanoparticles. The phase separation and electron pairing, monitored by electron doping and magnetic field surprisingly resemble incoherent electron pairing in the family of doped high-T(c) cuprates, ruthenocuprates, iron pnictides and spontaneous ferroelectricity in multiferroic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...