Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nature ; 625(7993): 110-118, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093002

ABSTRACT

Many theories of offline memory consolidation posit that the pattern of neurons activated during a salient sensory experience will be faithfully reactivated, thereby stabilizing the pattern1,2. However, sensory-evoked patterns are not stable but, instead, drift across repeated experiences3-6. Here, to investigate the relationship between reactivations and the drift of sensory representations, we imaged the calcium activity of thousands of excitatory neurons in the mouse lateral visual cortex. During the minute after a visual stimulus, we observed transient, stimulus-specific reactivations, often coupled with hippocampal sharp-wave ripples. Stimulus-specific reactivations were abolished by local cortical silencing during the preceding stimulus. Reactivations early in a session systematically differed from the pattern evoked by the previous stimulus-they were more similar to future stimulus response patterns, thereby predicting both within-day and across-day representational drift. In particular, neurons that participated proportionally more or less in early stimulus reactivations than in stimulus response patterns gradually increased or decreased their future stimulus responses, respectively. Indeed, we could accurately predict future changes in stimulus responses and the separation of responses to distinct stimuli using only the rate and content of reactivations. Thus, reactivations may contribute to a gradual drift and separation in sensory cortical response patterns, thereby enhancing sensory discrimination7.


Subject(s)
Hippocampus , Memory Consolidation , Neurons , Visual Cortex , Animals , Mice , Hippocampus/physiology , Neurons/physiology , Calcium/metabolism , Visual Cortex/cytology , Visual Cortex/physiology
2.
Neuron ; 111(5): 711-726.e11, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36584680

ABSTRACT

Retinal ganglion cell (RGC) types relay parallel streams of visual feature information. We hypothesized that neuromodulators might efficiently control which visual information streams reach the cortex by selectively gating transmission from specific RGC axons in the thalamus. Using fiber photometry recordings, we found that optogenetic stimulation of serotonergic axons in primary visual thalamus of awake mice suppressed ongoing and visually evoked calcium activity and glutamate release from RGC boutons. Two-photon calcium imaging revealed that serotonin axon stimulation suppressed RGC boutons that responded strongly to global changes in luminance more than those responding only to local visual stimuli, while the converse was true for suppression induced by increases in arousal. Converging evidence suggests that differential expression of the 5-HT1B receptor on RGC presynaptic terminals, but not differential density of nearby serotonin axons, may contribute to the selective serotonergic gating of specific visual information streams before they can activate thalamocortical neurons.


Subject(s)
Geniculate Bodies , Receptor, Serotonin, 5-HT1B , Serotonin , Thalamus , Animals , Mice , Axons/physiology , Calcium , Geniculate Bodies/physiology , Receptor, Serotonin, 5-HT1B/metabolism , Retinal Ganglion Cells/physiology , Serotonin/metabolism , Thalamus/physiology
3.
Curr Biol ; 32(7): 1563-1576.e8, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35245458

ABSTRACT

Postrhinal cortex (POR) and neighboring lateral visual association areas are necessary for identifying objects and interpreting them in specific contexts, but how POR neurons encode the same object across contexts remains unclear. Here, we imaged excitatory neurons in mouse POR across tens of days prior to and throughout initial cue-reward learning and reversal learning. We assessed responses to the same cue when it was rewarded or unrewarded, during both locomotor and stationary contexts. Surprisingly, a large class of POR neurons were minimally cue-driven prior to learning. After learning, distinct clusters within this class responded selectively to a given cue when presented in a specific conjunction of reward and locomotion contexts. In addition, another class contained clusters of neurons whose cue responses were more transient, insensitive to reward learning, and adapted over thousands of presentations. These two classes of POR neurons may support context-dependent interpretation and context-independent identification of sensory cues.


Subject(s)
Cues , Visual Cortex , Animals , Cerebral Cortex/physiology , Mice , Neurons/physiology , Reward , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...