Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 93(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31511382

ABSTRACT

Maternal vaccination may be the most effective and safest approach to the protection of infants from respiratory syncytial virus (RSV) infection, a severe acute lower respiratory tract disease in infants and young children worldwide. We previously compared five different virus-like particle (VLP)-associated, mutation-stabilized prefusion F (pre-F) proteins, including the prototype DS-Cav1 F VLPs. We showed that alternative versions of prefusion F proteins have different conformations and induce different populations of anti-F protein antibodies. Two of these alternative pre-F VLPs, the UC-2 F and UC-3 F VLPs, stimulated in mice higher titers of neutralizing antibodies than DS-Cav1 F VLPs (M. L. Cullen, R. M. Schmidt, M. G. Torres, A. A. Capoferri, et al., Vaccines 7:21-41, 2019, https://doi.org/10.3390/vaccines7010021). Here we describe a comparison of these two pre-F VLPs with DS-Cav1 F VLPs as maternal vaccines in cotton rats and report that UC-3 F VLPs significantly increased the neutralizing antibody (NAb) titers in pregnant dams compared to DS-Cav1 F VLPs. The neutralizing antibody titers in the sera of the offspring of the dams immunized with UC-3 F VLPs were significantly higher than those in the sera of the offspring of dams immunized with DS-Cav1 VLPs. This increase in serum NAb titers translated to a 6- to 40-fold lower virus titer in the lungs of the RSV-challenged offspring of dams immunized with UC-3 F VLPs than in the lungs of the RSV-challenged offspring of dams immunized with DS-Cav1 F VLPs. Importantly, the offspring of UC-3 F VLP-immunized dams showed significant protection from lung pathology and from induction of inflammatory lung cytokine mRNA expression after RSV challenge. Immunization with UC-3 F VLPs also induced durable levels of high-titer neutralizing antibodies in dams.IMPORTANCE Respiratory syncytial virus (RSV) is a significant human pathogen severely impacting neonates and young children, but no vaccine exists to protect this vulnerable population. Furthermore, direct vaccination of neonates is likely ineffective due to the immaturity of their immune system, and neonate immunization is potentially unsafe. Maternal vaccination may be the best and safest approach to the protection of neonates through the passive transfer of maternal neutralizing antibodies in utero to the fetus after maternal immunization. Here we report that immunization of pregnant cotton rats, a surrogate model for human maternal immunization, with novel RSV virus-like particle (VLP) vaccine candidates containing stabilized prefusion RSV F proteins provides significant levels of protection of the offspring of immunized dams from RSV challenge. We also found that antibodies induced by VLPs containing different versions of the prefusion F protein varied by 40-fold in the extent of protection provided to the offspring of vaccinated dams upon RSV challenge.


Subject(s)
Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Vaccines, Virus-Like Particle/immunology , Viral Fusion Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell Line , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Female , Glycoproteins/immunology , Humans , Immunization , Lung/immunology , Lung/pathology , RNA, Messenger/metabolism , Respiratory Syncytial Virus, Human/genetics , Sigmodontinae , Vaccination , Viral Fusion Proteins/genetics
2.
mBio ; 10(3)2019 05 07.
Article in English | MEDLINE | ID: mdl-31064834

ABSTRACT

We previously reported that the Toll-like receptor 4 (TLR4) antagonist Eritoran blocks acute lung injury (ALI) therapeutically in mouse and cotton rat models of influenza. However, secondary (2°) bacterial infection following influenza virus infection is associated with excess morbidity and mortality. Wild-type (WT) mice infected with mouse-adapted influenza A/Puerto Rico/8/34 virus (PR8) and, 7 days later, with Streptococcus pneumoniae serotype 3 (Sp3) exhibited significantly enhanced lung pathology and lethality that was reversed by Eritoran therapy after PR8 infection but before Sp3 infection. Cotton rats infected with nonadapted pH1N1 influenza virus and then superinfected with methicillin-resistant Staphylococcus aureus also exhibited increased lung pathology and serum high-mobility-group box 1 (HMGB1) levels, both of which were blunted by Eritoran therapy. In mice, PR8 infection suppressed Sp3-induced CXCL1 and CXCL2 mRNA, reducing neutrophil infiltration and increasing the bacterial burden, all of which were reversed by Eritoran treatment. While beta interferon (IFN-ß)-deficient (IFN-ß-/-) mice are highly susceptible to PR8, they exhibited delayed death upon Sp3 superinfection, indicating that while IFN-ß was protective against influenza, it negatively impacted the host response to Sp3 IFN-ß-treated WT macrophages selectively suppressed Sp3-induced CXCL1/CXCL2 transcriptionally, as evidenced by reduced recruitment of RNA polymerase II to the CXCL1 promoter. Thus, influenza establishes a "trained" state of immunosuppression toward 2° bacterial infection, in part through the potent induction of IFN-ß and its downstream transcriptional regulation of chemokines, an effect reversed by Eritoran.IMPORTANCE Enhanced susceptibility to 2° bacterial infections following infection with influenza virus is a global health concern that accounts for many hospitalizations and deaths, particularly during pandemics. The complexity of the impaired host immune response during 2° bacterial infection has been widely studied. Both type I IFN and neutrophil dysfunction through decreased chemokine production have been implicated as mechanisms underlying enhanced susceptibility to 2° bacterial infections. Our findings support the conclusion that selective suppression of CXCL1/CXCL2 represents an IFN-ß-mediated "training" of the macrophage transcriptional response to TLR2 agonists and that blocking of TLR4 therapeutically with Eritoran after influenza virus infection reverses this suppression by blunting influenza-induced IFN-ß.


Subject(s)
Coinfection/microbiology , Lung/microbiology , Orthomyxoviridae Infections/microbiology , Superinfection , Acute Lung Injury/microbiology , Acute Lung Injury/virology , Animals , Chemokine CXCL1/genetics , Chemokine CXCL1/immunology , Chemokine CXCL2/genetics , Chemokine CXCL2/immunology , Disaccharides/administration & dosage , Disease Susceptibility , Female , Immunocompromised Host , Influenza A virus , Interferon-beta/immunology , Male , Methicillin-Resistant Staphylococcus aureus , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/complications , Sigmodontinae , Streptococcus pneumoniae/immunology , Sugar Phosphates/administration & dosage , Toll-Like Receptor 4/immunology
3.
Nat Commun ; 9(1): 1904, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765035

ABSTRACT

Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants. Maternal immunization is an option to increase maternal antibody levels and protect infants from infection. Here we assess the efficacy of virus-like particle (VLP) vaccine candidates containing stabilized pre-fusion (pre-F) or post-fusion (post-F) conformations of the RSV F protein and the attachment RSV G protein in a maternal immunization model using cotton rats. VLP vaccines containing RSV F and G proteins strongly boost pre-existing RSV immunity in dams preventing their perinatal drop in immunity. Boosting is stronger for the pre-F VLP than for the post-F VLP or purified subunit F protein vaccines, giving an advantage on mothers' protection. VLP immunization of dams provides significant protection to pups from RSV challenge and reduced pulmonary inflammation. Collectively, our results show that a VLP vaccine with RSV F and G proteins is safe and effective for maternal and adult vaccination.


Subject(s)
Immunity, Maternally-Acquired , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Animals , Antibodies, Viral/immunology , Disease Models, Animal , Female , Humans , Immunization , Lung/immunology , Lung/virology , Male , Rats , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Sigmodontinae , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Fusion Proteins/administration & dosage , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...