Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Phys Chem Chem Phys ; 24(46): 28444-28456, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36399064

ABSTRACT

X-ray characterisation methods have undoubtedly enabled cutting-edge advances in all aspects of materials research. Despite the enormous breadth of information that can be extracted from these techniques, the challenge of radiation-induced sample change and damage remains prevalent. This is largely due to the emergence of modern, high-intensity X-ray source technologies and the growing potential to carry out more complex, longer duration in situ or in operando studies. The tunability of synchrotron beamlines enables the routine application of photon energy-dependent experiments. This work explores the structural stability of [Rh(COD)Cl]2, a widely used catalyst and precursor in the chemical industry, across a range of beamline parameters that target X-ray energies of 8 keV, 15 keV, 18 keV and 25 keV, on a powder X-ray diffraction synchrotron beamline at room temperature. Structural changes are discussed with respect to absorbed X-ray dose at each experimental setting associated with the respective photon energy. In addition, the X-ray radiation hardness of the catalyst is discussed, by utilising the diffraction data collected at the different energies to determine a dose limit, which is often considered in protein crystallography and typically overlooked in small molecule crystallography. This work not only gives fundamental insight into how damage manifests in this organometallic catalyst, but will encourage careful consideration of experimental X-ray parameters before conducting diffraction on similar radiation-sensitive organometallic materials.


Subject(s)
Photons , Synchrotrons , X-Rays , Crystallography , X-Ray Diffraction
3.
ACS Appl Mater Interfaces ; 14(42): 47445-47460, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36218307

ABSTRACT

A challenge in neurology is the lack of efficient brain-penetrable neuroprotectants targeting multiple disease mechanisms. Plasmonic gold nanostars are promising candidates to deliver standard-of-care drugs inside the brain but have not been trialed as carriers for neuroprotectants. Here, we conjugated custom-made peptide dendrimers (termed H3/H6), encompassing motifs of the neurotrophic S100A4-protein, onto star-shaped and spherical gold nanostructures (H3/H6-AuNS/AuNP) and evaluated their potential as neuroprotectants and interaction with neurons. The H3/H6 nanostructures crossed a model blood-brain barrier, bound to plasma membranes, and induced neuritogenesis with the AuNS, showing higher potency/efficacy than the AuNP. The H3-AuNS/NP protected neurons against oxidative stress, the H3-AuNS being more potent, and against Parkinson's or Alzheimer's disease (PD/AD)-related cytotoxicity. Unconjugated S100A4 motifs also decreased amyloid beta-induced neurodegeneration, introducing S100A4 as a player in AD. Using custom-made dendrimers coupled to star-shaped nanoparticles is a promising route to activate multiple neuroprotective pathways and increase drug potency to treat neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Dendrimers , Neuroprotective Agents , Humans , Neuroprotective Agents/chemistry , Amyloid beta-Peptides , Dendrimers/pharmacology , Dendrimers/therapeutic use , Neurons , Gold/chemistry , Alzheimer Disease/drug therapy
4.
Phys Chem Chem Phys ; 24(38): 23329-23339, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36128980

ABSTRACT

Molecules which exhibit thermally activated delayed fluorescence (TADF) show great promise for use in efficient, environmentally-friendly OLEDs, and thus the design of new TADF emitters is an active area of research. However, when used in devices, they are typically in the form of disordered thin films, where both the external molecular environment and thermally-induced internal variations in parameters such as the torsion angle can strongly influence their electronic structure. In this work, we use density functional theory and X-ray photoelectron spectroscopy to investigate the impact of disorder on both core and valence states in the TADF emitter 2CzPN (1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene). By simulating gas phase molecules displaying varying levels of disorder, we assess the relative sensitivity of the different states to factors such as varying torsion angle. The theoretical results for both core and valence states show good agreement with experiment, thereby also highlighting the advantages of our approach for interpreting experimental spectra of large aromatic molecules, which are too complex to interpret based solely on experimental data.

5.
J Phys Chem A ; 125(34): 7473-7488, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34420303

ABSTRACT

X-ray characterization techniques are invaluable for probing material characteristics and properties, and have been instrumental in discoveries across materials research. However, there is a current lack of understanding of how X-ray-induced effects manifest in small molecular crystals. This is of particular concern as new X-ray sources with ever-increasing brilliance are developed. In this paper, systematic studies of X-ray-matter interactions are reported on two industrially important catalysts, [Ir(COD)Cl]2 and [Rh(COD)Cl]2, exposed to radiation in X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) experiments. From these complementary techniques, changes to structure, chemical environments, and electronic structure are observed as a function of X-ray exposure, allowing comparisons of stability to be made between the two catalysts. Radiation dose is estimated using recent developments to the RADDOSE-3D software for small molecules and applied to powder XRD and XPS experiments. Further insights into the electronic structure of the catalysts and changes occurring as a result of the irradiation are drawn from density functional theory (DFT). The techniques combined here offer much needed insight into the X-ray-induced effects in transition-metal catalysts and, consequently, their intrinsic stabilities. There is enormous potential to extend the application of these methods to other small molecular systems of scientific or industrial relevance.

6.
J Phys Condens Matter ; 33(23)2021 May 13.
Article in English | MEDLINE | ID: mdl-33647896

ABSTRACT

Hard x-ray photoelectron spectroscopy (HAXPES) is establishing itself as an essential technique for the characterisation of materials. The number of specialised photoelectron spectroscopy techniques making use of hard x-rays is steadily increasing and ever more complex experimental designs enable truly transformative insights into the chemical, electronic, magnetic, and structural nature of materials. This paper begins with a short historic perspective of HAXPES and spans from developments in the early days of photoelectron spectroscopy to provide an understanding of the origin and initial development of the technique to state-of-the-art instrumentation and experimental capabilities. The main motivation for and focus of this paper is to provide a picture of the technique in 2020, including a detailed overview of available experimental systems worldwide and insights into a range of specific measurement modi and approaches. We also aim to provide a glimpse into the future of the technique including possible developments and opportunities.

7.
J Phys Chem Lett ; 11(6): 2256-2262, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32125160

ABSTRACT

Core level photoelectron spectroscopy is a widely used technique to study amino acids. Interpretation of the individual contributions from functional groups and their local chemical environments to overall spectra requires both high-resolution reference spectra and theoretical insights, for example, from density functional theory calculations. This is a particular challenge for crystalline amino acids due to the lack of experimental data and the limitation of previous calculations to gas phase molecules. Here, a state of the art multiresolution approach is used for high-precision gas phase calculations and to validate core hole pseudopotentials for plane-wave calculations. This powerful combination of complementary numerical techniques provides a framework for accurate ΔSCF calculations for molecules and solids in systematic basis sets. It is used to successfully predict C and O 1s core level spectra of glycine, alanine, and serine and identify chemical state contributions to experimental spectra of crystalline amino acids.

8.
Front Psychol ; 5: 1341, 2014.
Article in English | MEDLINE | ID: mdl-25620935

ABSTRACT

Subjective and psychophysiological emotional responses to music from two different cultures were compared within these two cultures. Two identical experiments were conducted: the first in the Congolese rainforest with an isolated population of Mebenzélé Pygmies without any exposure to Western music and culture, the second with a group of Western music listeners, with no experience with Congolese music. Forty Pygmies and 40 Canadians listened in pairs to 19 music excerpts of 29-99 s in duration in random order (eight from the Pygmy population and 11 Western instrumental excerpts). For both groups, emotion components were continuously measured: subjective feeling (using a two- dimensional valence and arousal rating interface), peripheral physiological activation, and facial expression. While Pygmy music was rated as positive and arousing by Pygmies, ratings of Western music by Westerners covered the range from arousing to calming and from positive to negative. Comparing psychophysiological responses to emotional qualities of Pygmy music across participant groups showed no similarities. However, Western stimuli, rated as high and low arousing by Canadians, created similar responses in both participant groups (with high arousal associated with increases in subjective and physiological activation). Several low-level acoustical features of the music presented (tempo, pitch, and timbre) were shown to affect subjective and physiological arousal similarly in both cultures. Results suggest that while the subjective dimension of emotional valence might be mediated by cultural learning, changes in arousal might involve a more basic, universal response to low-level acoustical characteristics of music.

9.
AMB Express ; 3(1): 37, 2013 Jul 06.
Article in English | MEDLINE | ID: mdl-23829873

ABSTRACT

Propionibacterium acnes and Staphylococcus aureus are cutaneous pathogens that have become increasingly resistant to antibiotics. We sought to determine if chitosan, a polymer of deacetylated chitin, could be used as a potential treatment against these bacteria. We found that higher molecular weight chitosan had superior antimicrobial properties compared to lower molecular weights, and that this activity occurred in a pH dependent manner. Electron and fluorescence microscopy revealed that chitosan forms aggregates and binds to the surface of bacteria, causing shrinkage of the bacterial membrane from the cell wall. Of special relevance, clinical isolates of P. acnes were vulnerable to chitosan, which could be combined with benzoyl peroxide for additive antibacterial effect. Chitosan also demonstrated significantly less cytotoxicity to monocytes than benzoyl peroxide. Overall, chitosan demonstrates many promising qualities for treatment of cutaneous pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...