Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
J R Soc Interface ; 19(193): 20220391, 2022 08.
Article in English | MEDLINE | ID: mdl-35919982

ABSTRACT

Phosphate and sulfate groups are integral to energy metabolism and introduce negative charges into biological macromolecules. One purpose of such modifications is to elicit precise binding/activation of protein partners. The physico-chemical properties of the two groups, while superficially similar, differ in one important respect-the valency of the central (phosphorus or sulfur) atom. This dictates the distinct properties of their respective esters, di-esters and hence their charges, interactions with metal ions and their solubility. These, in turn, determine the contrasting roles for which each group has evolved in biological systems. Biosynthetic links exist between the two modifications; the sulfate donor 3'-phosphoadenosine-5'-phosphosulfate being formed from adenosine triphosphate (ATP) and adenosine phosphosulfate, while the latter is generated from sulfate anions and ATP. Furthermore, phosphorylation, by a xylosyl kinase (Fam20B, glycosaminoglycan xylosylkinase) of the xylose residue of the tetrasaccharide linker region that connects nascent glycosaminoglycan (GAG) chains to their parent proteoglycans, substantially accelerates their biosynthesis. Following observations that GAG chains can enter the cell nucleus, it is hypothesized that sulfated GAGs could influence events in the nucleus, which would complete a feedback loop uniting the complementary anionic modifications of phosphorylation and sulfation through complex, inter-connected signalling networks and warrants further exploration.


Subject(s)
Biosynthetic Pathways , Glycosaminoglycans , Adenosine Triphosphate/metabolism , Esters , Glycosaminoglycans/chemistry , Phosphorylation , Sulfates/metabolism
2.
Open Biol ; 6(9)2016 Sep.
Article in English | MEDLINE | ID: mdl-27655733

ABSTRACT

Cellular adaptation to hypoxia occurs via a complex programme of gene expression mediated by the hypoxia-inducible factor (HIF). The oxygen labile alpha subunits, HIF-1α/-2α, form a heterodimeric transcription factor with HIF-1ß and modulate gene expression. HIF-1α and HIF-2α possess similar domain structure and bind to the same consensus sequence. However, they have different oxygen-dependent stability and activate distinct genes. To better understand these differences, we used fluorescent microscopy to determine precise localization and dynamics. We observed a homogeneous distribution of HIF-1α in the nucleus, while HIF-2α localized into speckles. We demonstrated that the number, size and mobility of HIF-2α speckles were independent of cellular oxygenation and that HIF-2α molecules were capable of exchanging between the speckles and nucleoplasm in an oxygen-independent manner. The concentration of HIF-2α into speckles may explain its increased stability compared with HIF-1α and its slower mobility may offer a mechanism for gene specificity.

3.
R Soc Open Sci ; 2(6): 140454, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26543570

ABSTRACT

Raster image correlation spectroscopy (RICS) measures the diffusion of fluorescently labelled molecules from stacks of confocal microscopy images by analysing correlations within the image. RICS enables the observation of a greater and, thus, more representative area of a biological system as compared to other single molecule approaches. Photothermal microscopy of gold nanoparticles allows long-term imaging of the same labelled molecules without photobleaching. Here, we implement RICS analysis on a photothermal microscope. The imaging of single gold nanoparticles at pixel dwell times short enough for RICS (60 µs) with a piezo-driven photothermal heterodyne microscope is demonstrated (photothermal raster image correlation spectroscopy, PhRICS). As a proof of principle, PhRICS is used to measure the diffusion coefficient of gold nanoparticles in glycerol : water solutions. The diffusion coefficients of the nanoparticles measured by PhRICS are consistent with their size, determined by transmission electron microscopy. PhRICS was then used to probe the diffusion speed of gold nanoparticle-labelled fibroblast growth factor 2 (FGF2) bound to heparan sulfate in the pericellular matrix of live fibroblast cells. The data are consistent with previous single nanoparticle tracking studies of the diffusion of FGF2 on these cells. Importantly, the data reveal faster FGF2 movement, previously inaccessible by photothermal tracking, and suggest that inhomogeneity in the distribution of bound FGF2 is dynamic.

4.
Chem Commun (Camb) ; 50(86): 13157-60, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25227324

ABSTRACT

A single maleimide was installed onto the self-assembled monolayer of gold nanoparticles by copper-free click chemistry. Simple covalent biofunctionalisation is demonstrated by coupling fibroblast growth factor 2 and an oligosaccharide in a 1 : 1 stoichiometry by thiol-Michael addition.


Subject(s)
Gold/chemistry , Maleimides/chemistry , Metal Nanoparticles/chemistry , Click Chemistry , Copper/chemistry , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Sulfhydryl Compounds/chemistry
5.
Analyst ; 139(19): 4855-61, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25096538

ABSTRACT

We present a generalized table of extinction coefficient data for silver nanoparticles from 8 to 100 nm. This table allows for easy and quick estimation of the concentration and size of modified and mono-dispersed silver nanoparticles from their optical spectra. We obtained data by determining the silver content of citrate-stabilised silver nanoparticles using sodium cyanide to dissolve the nanoparticles, and measuring solution conductivity with a pH meter and a cyanide-ion selective electrode. The quantification of the silver ion concentration enabled the calculation of extinction coefficients. Experimentally calculated extinction coefficients, in the current work, are in good agreement with collated literature values measured by different authors with non-standardized methodology and each for a limited range of particle size. They are also in good agreement with our theoretical calculations using Mie theory. Thus, we provide a highly standardized and comprehensive tabulated reference data-set.


Subject(s)
Chemistry Techniques, Analytical/methods , Citric Acid/chemistry , Metal Nanoparticles/analysis , Silver/chemistry , Spectrophotometry, Ultraviolet , Coordination Complexes/chemistry , Particle Size , Sodium Cyanide/chemistry
6.
Pancreatology ; 13(6): 598-604, 2013.
Article in English | MEDLINE | ID: mdl-24280576

ABSTRACT

BACKGROUND: The cellular microenvironment plays an important role in the regulation of homoeostasis and is a source of potential biomarkers and drug targets. In a genome-wide analysis the extracellular proteins that bind to heparin (HBPs) have been shown to form highly modular and interconnected extracellular protein regulatory networks. Using a systems biology approach, we have investigated the role of HBP networks in the normal pancreas and pancreatic digestive diseases. METHODS: Lists of mRNAs encoding for HBPs associated with the normal pancreas (NP), acute pancreatitis (AP), chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) were obtained using public databases and publications. Networks of the putative protein interactomes derived from mRNA expression data of HBPs were built and analysed using cluster analysis, gene ontology term enrichment and canonical pathways analysis. RESULTS: The extracellular heparin-binding putative protein interactomes in the pancreas were better connected than their non heparin-binding counterparts, having higher clustering coefficients in the normal pancreas (0.273), acute pancreatitis (0.457), chronic pancreatitis (0.329) and pancreatic ductal adenocarcinoma (0.269). 'Hepatic Fibrosis/Hepatic Stellate Cell Activation' appears to be a significant canonical pathway in pancreatic homoeostasis in health and disease with a large number of important HBPs. CONCLUSIONS: Our analyses clearly demonstrate that HBPs form disease-specific and highly connected networks that can be explored for potential biomarkers and as collective drug targets via the modification of heparin binding properties.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Blood Proteins/genetics , Blood Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Pancreatic Diseases/metabolism , Cluster Analysis , Databases, Genetic , Extracellular Matrix/metabolism , Gene Regulatory Networks , Humans , Pancreatic Stellate Cells/metabolism , Pancreatitis, Acute Necrotizing/metabolism , Pancreatitis, Alcoholic/metabolism , Pancreatitis, Chronic/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
7.
J Chem Phys ; 132(21): 214708, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20528042

ABSTRACT

It is shown that the adsorption of cytosine at the Au(110)/liquid interface at a potential of 0.0 V "freezes" the Au(110) surface in the (1x1) structure and that the molecule does not change its orientation on the surface as the potential is varied. In contrast the adsorption of adenine does not freeze the Au(110) surface even though both molecules adopt a base stacking structure with individual molecules oriented in a plane vertical to the Au(110) surface with their long axes along [110] rows. It is suggested that cytosine bonds to three Au atoms through the NH(2) group, the N(3) and O(8) sites, and that this arrangement stabilizes the Au(110) surface and prevents its reconstruction to the more open (1x2) and (1x3) structures as the applied voltage is varied. The weaker bonding of the adenine molecule with the gold surface is unable to prevent the voltage induced reconstruction of the Au(110) surface.


Subject(s)
Cytosine/chemistry , Gold/chemistry , Adsorption , Electrolytes/chemistry , Surface Properties
8.
Methods Enzymol ; 464: 79-104, 2009.
Article in English | MEDLINE | ID: mdl-19903551

ABSTRACT

Antibodies to mycolic acid (MA) antigens can be detected as surrogate markers of active tuberculosis (TB) with evanescent field biosensors where the lipid antigens are encapsulated in liposomes. Standard immunoassay such as ELISA, where the lipid antigen is not encapsulated, but directly adsorbed to the well-bottoms of microtiter plates, does not yield the required sensitivity and specificity for accurate diagnosis of TB. One reason for this is the cross-reactivity of natural anticholesterol antibodies with MAs. MAs are the major cell wall lipids of mycobacteria. Mycobacterial MA has immunomodulatory properties and elicits specific antibodies in TB patients. Liposomes were optimized for their use as carriers both for the presentation of immobilized purified mycobacterial MA on sensor surfaces, and as a soluble inhibitor of antibody binding in inhibition assays. By using an inhibition assay in the biosensor, the interference by anticholesterol antibodies is reduced. Here, we describe the MA carrying capacity of liposomes with and without cholesterol as a stabilizing agent, optimized concentration and size of liposomes for use in the biosensor assay, comparison of the methods for wave-guide and surface plasmon resonance biosensors and how the cholesteroid nature of MA can be demonstrated by the biosensor when Amphotericin B is allowed to bind to MA in liposomes.


Subject(s)
Antibodies/metabolism , Biosensing Techniques , Liposomes/metabolism , Mycolic Acids , Biosensing Techniques/methods , Cholesterol/metabolism , Hydrogen-Ion Concentration , Mycolic Acids/immunology , Particle Size
9.
J Chem Phys ; 130(4): 044702, 2009 Jan 28.
Article in English | MEDLINE | ID: mdl-19191399

ABSTRACT

Reflection anisotropy spectroscopy (RAS) has been used to show that at saturation coverage adenine adsorbs on the Au(110)/electrolyte interface in a base-stacking configuration with the plane of the bases orientated vertically on the surface and with the long axis of the molecules parallel to the [110] direction. Changes in the RAS observed from adsorbed adenine as a result of changes in the potential applied to the Au(110) electrode could arise from slight changes in the orientation of the molecules in the vertical plane.


Subject(s)
Adenine/chemistry , Anisotropy , Gold/chemistry , Spectrum Analysis/methods , Adsorption , Electrodes , Electrolytes/chemistry , Molecular Structure
10.
Oncogene ; 27(57): 7139-49, 2008 Dec 04.
Article in English | MEDLINE | ID: mdl-18794800

ABSTRACT

Osteopontin (OPN) is a phosphorylated glycoprotein that binds to alpha v-containing integrins and is important in malignant transformation and cancer. Previously, we have utilized suppressive subtractive hybridization between mRNAs isolated from the Rama 37 (R37) rat mammary cell line and a subclone rendered invasive and metastatic by stable transfection with an expression vector for OPN to identify RAN GTPase (RAN) as the most overexpressed gene, in addition to that of OPN. Here we show that transfection of noninvasive R37 cells with an expression vector for RAN resulted in increased anchorage-independent growth, cell attachment and invasion through Matrigel in vitro, and metastasis in syngeneic rats. This induction of a malignant phenotype was induced independently of the expression of OPN, and was reversed by specifically reducing the expression of RAN using small-interfering RNAs. By using a combination of mutant protein and inhibitors, it was found that RAN signal transduction occurred through the c-Met receptor and PI3 kinase. This study therefore identifies RAN as a novel effector of OPN-mediated malignant transformation and some of its downstream signaling events in a mammary epithelial model of cancer invasion/metastasis.


Subject(s)
Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Neoplasm Invasiveness/genetics , Osteopontin/metabolism , ran GTP-Binding Protein/metabolism , Animals , Blotting, Northern , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Female , Fluorescent Antibody Technique , Gene Expression , Immunohistochemistry , Osteopontin/genetics , Phenotype , Phosphatidylinositol 3-Kinases/biosynthesis , Proto-Oncogene Proteins c-met/biosynthesis , RNA, Small Interfering , Rats , Signal Transduction/physiology , Transfection , ran GTP-Binding Protein/genetics
11.
Carbohydr Res ; 343(12): 2184-93, 2008 Aug 11.
Article in English | MEDLINE | ID: mdl-18226804

ABSTRACT

The interactions between Cu(II) ions and heparin were investigated using several complementary spectroscopic techniques. NMR indicated an initial binding phase involving specific coordination to four points in the structure that recur in slightly different environments throughout the heparin chain; the carboxylic acid group and the ring oxygen of iduronate-2-O-sulfate, the glycosidic oxygen between this residue and the adjacent (towards the reducing end) glucosamine and the 6-O-sulfate group. In contrast, the later binding phase showed little structural specificity. One- and two-dimensional correlated FTIR revealed that complex out of phase (asynchronous) conformational changes also occurred during the titration of Cu(II) ions into heparin, involving the CO and N-H stretches. EPR demonstrated that the environments of the Cu(II) ions in the initial binding phase were tetragonal (with slightly varied geometry), while the later non-specific phases exhibited conventional coordination. Visible spectroscopy confirmed a shift of the absorbance maximum. Titration of Cu(II) ions into a solution of heparin indicated (both by analysis of FTIR and EPR spectra) that the initial binding phase was complete by 15-20 Cu(II) ions per chain; thereafter the ions bound in the non-specific mode. Hetero-correlation spectroscopy (FTIR-CD) improved resolution and assisted assignment of the broad CD features from the FTIR spectra and indicated both in-phase and more complex out of phase (synchronous and asynchronous, respectively) changes in interactions within the heparin molecule during the titration of Cu(II) ions.


Subject(s)
Cations, Divalent/chemistry , Copper/chemistry , Heparin/chemistry , Circular Dichroism , Electron Spin Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Spectroscopy, Fourier Transform Infrared/methods
12.
Pediatr Surg Int ; 23(5): 411-7, 2007 May.
Article in English | MEDLINE | ID: mdl-17216534

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) are essential to respiratory morphogenesis in species as diverse as Drosophila and mice; they play a role in the regulation of numerous HS-binding growth factors, e.g. fibroblast growth factors. Moreover, an HS analogue, heparin, modulates lung growth in vitro. However, it has been difficult to assess the roles of specific HS structures in lung development due to technical barriers to their spatial localisation. Lungs from Sprague-Dawley rats were harvested between E15.5 and E19.5 and immediately fixed in 4 % (w/v) paraformaldehyde (in 0.1 M phosphate-buffered saline (PBS), pH 7.4). Lungs were washed in PBS, cryoprotected with 20% (w/v) sucrose (in PBS), gelatin embedded [7.5% (w/v) gelatin, 15% (w/v) sucrose in PBS], before being covered in Cryo-M-Bed (Bright, Huntingdon, UK) and snap frozen at -40 degrees C. Cryosections were cut at 8 microm and stained with the HSPG core protein specific antibody 3G10 and a HS 'phage display antibody, EW4G2V. 3G10 and EW4G2V immunohistochemistry highlighted the presence of specific HS structures in lungs at all gestational ages examined. 3G10 strongly labelled airway basement membranes and the surrounding mesenchyme and showed weak staining of airway epithelial cells. EW4G2V, however, was far more selective, labelling the airway basement membranes only. Mesenchymal and epithelial cells did not appear to possess the HS epitope recognised by EW4G2V at these gestational ages. Novel 'phage display antibodies allow the spatial distribution of tissue HS to be analysed, and demonstrate in situ that distinct cellular compartments of a tissue possess different HS structures, possibly on the same proteoglycan core protein. These probes offer a new opportunity to determine the role of HS in the pathogenesis of congenital defects such as congenital diaphragmatic hernia (CDH), where lung development is aberrant, and the resulting pulmonary hypoplasia and hypertension are a primary cause of mortality.


Subject(s)
Antibodies/immunology , Antibody Specificity/immunology , Heparitin Sulfate/immunology , Immunohistochemistry/methods , Lung/immunology , Animals , Epitopes/immunology , Heparan Sulfate Proteoglycans/immunology , Lung/cytology , Lung/embryology , Peptide Library , Rats , Rats, Sprague-Dawley
13.
Biochem Soc Trans ; 34(Pt 3): 427-30, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16709178

ABSTRACT

New approaches, rooted in the physical sciences, have been developed to gain a more fundamental understanding of protein-GAG (glycosaminoglycan) interactions. DPI (dual polarization interferometry) is an optical technique, which measures real-time changes in the mass of molecules bound at a surface and the geometry of the bound molecules. QCM-D (quartz crystal microbalance-dissipation), an acoustic technique, measures the mass and the viscoelastic properties of adsorbates. The FTIR (Fourier-transform IR) amide bands I, II and III, resulting from the peptide bond, provide insight into protein secondary structure. Synchrotron radiation CD goes to much shorter wavelengths than laboratory CD, allowing access to chromophores that provide insights into the conformation of the GAG chain and of beta-strand structures of proteins. To tackle the diversity of GAG structure, we are developing noble metal nanoparticle probes, which can be detected at the level of single particles and so enable single molecule biochemistry and analytical chemistry. These new approaches are enabling new insights into structure-function relationships in GAGs and together they will resolve many of the outstanding problems in this field.


Subject(s)
Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Nanotechnology , Proteins/chemistry , Proteins/metabolism , Animals , Glycosaminoglycans/physiology , Humans , Proteins/physiology , Spectrum Analysis
14.
Phys Rev Lett ; 96(8): 086102, 2006 Mar 03.
Article in English | MEDLINE | ID: mdl-16606198

ABSTRACT

It is demonstrated using reflection anisotropy spectroscopy that the adsorption of cytosine and cytidine -monophosphate at the Au(110) 1 x 2/electrolyte interface gives rise to ordered structures in which the base is oriented vertical to the surface and parallel to the [110] axis of the Au(110) plane.

15.
Am J Physiol Lung Cell Mol Physiol ; 291(4): L559-65, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16603591

ABSTRACT

Prenatal airway smooth muscle (ASM) peristalsis appears coupled to lung growth. Moreover, ASM progenitors produce fibroblast growth factor-10 (FGF-10) for lung morphogenesis. Congenital diaphragmatic hernia (CDH) is associated with lung hypoplasia, FGF-10 deficiency, and postnatal ASM dysfunction. We hypothesized ASM dysfunction emerges in tandem with, and may contribute toward, the primordial lung hypoplasia that precedes experimental CDH. Spatial origin and frequency of ASM peristaltic waves were measured in normal and hypoplastic rat lungs cultured from day 13.5 of gestation (lung hypoplasia was generated by nitrofen dosing of pregnant dams). Longitudinal lung growth was assayed by bud counts and tracing photomicrographs of cultures. Coupling of lung growth and peristalsis was tested by stimulation studies using serum, FGF-10, or nicotine and inhibition studies with nifedipine or U0126 (MEK1/2 inhibitor). In normal lung, ASM peristalsis is developmentally regulated: proximal ASM becomes quiescent (while retaining capacity for cholinergic-stimulated peristalsis). However, in hypoplastic lung, spontaneous proximal ASM activity persists. FGF-10 corrects this aberrant ASM activity in tandem with improved growth. Stimulation and inhibition studies showed that, unlike normal lung, changes in growth or peristalsis are not consistently accompanied by parallel modulation of the other. ASM peristalsis undergoes FGF-10-regulated spatiotemporal development coupled to lung growth: this process is disrupted early in lung hypoplasia. ASM dysfunction emerges in tandem with and may therefore contribute toward lung hypoplasia in CDH.


Subject(s)
Lung/abnormalities , Lung/embryology , Muscle Contraction , Muscle Development/physiology , Muscle, Smooth/embryology , Respiratory System/embryology , Animals , Embryo, Mammalian/drug effects , Embryo, Mammalian/physiology , Embryonic Development , Female , Fibroblast Growth Factor 10/pharmacology , Hernia, Diaphragmatic/complications , Hernias, Diaphragmatic, Congenital , In Vitro Techniques , Muscle Contraction/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley , Respiratory System Abnormalities/complications , Respiratory System Abnormalities/embryology
16.
Cell Mol Life Sci ; 61(15): 1843-9, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15289927

ABSTRACT

Light scattering from metal nanoparticles and fluorescence from quantum dots offer distinct advantages over traditional fluorophores when it comes to detection of single molecules in living cells.


Subject(s)
Biochemistry , Molecular Biology , Nanotechnology , Biochemical Phenomena , Quantum Dots
17.
Biochem Soc Trans ; 31(2): 349-51, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12653635

ABSTRACT

Interactions between an immobilized, heparin-derived octasaccharide and growth factors have been observed using a quartz crystal microbalance-dissipation (QCM-D). This device can measure the amount of growth factors binding to the octasaccharide surface and also the change of dissipation of the surface. Dissipation is a measure of how the adhered material 'damps' the surface vibrations. The octasaccharides were anchored through their reducing ends by the intermediary of the alkanethiol molecule, which covalently binds to the crystal surface through the thiol group. As expected, heparin sulphate binding growth factors bound to the octasaccharide, but the change in mass of growth factor bound per unit change in dissipation is different for the different growth factors. Suggesting that the structures of the various growth factor-octasaccharide complexes are different, therefore, indicates that the change in dissipation can give insights into the structure, orientation and packing of the oligosaccharide-growth factor complexes.


Subject(s)
Oligosaccharides/metabolism , Proteins/metabolism , Animals , Growth Substances/metabolism , Humans , Microchemistry/instrumentation , Microchemistry/methods , Molecular Weight , Protein Binding
18.
Biochem Soc Trans ; 31(2): 352-3, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12653636

ABSTRACT

Hepatocyte growth factor (HGF)/scatter factor (SF) is a unique growth factor, in that it binds both heparan sulphate (HS) and dermatan sulphate (DS). The sequences in HS and DS that specifically interact with and modulate HGF/SF activity have not yet been fully identified. Ascidian DS, which uniquely possesses O-sulphation at C-6 (and not C-4) of its N -acetylgalactosamine unit, was analysed for HGF/SF-binding activity in the biosensor. The kinetic analysis revealed a strong, biologically relevant interaction with an equilibrium dissociation constant ( K (d)) of approx. 1 nM. An Erk activation assay also demonstrated stimulation of the MAP kinase pathway downstream of the Met receptor following addition of both HGF/SF and ascidian DS to the glycosaminoglycan-deficient CHO-745 mutant cell line. Furthermore, the activation of Met and the MAP kinase pathway by HGF/SF and ascidian DS leads to a cellular response in the form of migration.


Subject(s)
Dermatan Sulfate/metabolism , Heparitin Sulfate/metabolism , Hepatocyte Growth Factor/metabolism , Animals , Humans , Kinetics , Protein Binding , Signal Transduction
19.
J Biol Chem ; 276(51): 48341-9, 2001 Dec 21.
Article in English | MEDLINE | ID: mdl-11590178

ABSTRACT

Proteoglycans that modulate the activities of growth factors, chemokines, and coagulation factors regulate in turn the vascular endothelium with respect to processes such as inflammation, hemostasis, and angiogenesis. Endothelial cell-specific molecule-1 is mainly expressed by endothelial cells and regulated by pro-inflammatory cytokines (Lassalle, P., Molet, S., Janin, A., Heyden, J. V., Tavernier, J., Fiers, W., Devos, R., and Tonnel, A. B. (1996) J. Biol. Chem. 271, 20458-20464). We demonstrate that this molecule is secreted as a soluble dermatan sulfate (DS) proteoglycan. This proteoglycan represents the major form either secreted by cell lines or circulating in the human bloodstream. Because this proteoglycan is specifically secreted by endothelial cells, we propose to name it endocan. The glycosaminoglycan component of endocan consists of a single DS chain covalently attached to serine 137. Endocan dose-dependently increased the hepatocyte growth factor/scatter factor (HGF/SF)-mediated proliferation of human embryonic kidney cells, whereas the nonglycanated form of endocan did not. Moreover, DS chains purified from endocan mimicked the endocan-mediated increase of cell proliferation in the presence of HGF/SF. Overall, our results demonstrate that endocan is a novel soluble dermatan sulfate proteoglycan produced by endothelial cells. Endocan regulates HGF/SF-mediated mitogenic activity and may support the function of HGF/SF not only in embryogenesis and tissue repair after injury but also in tumor progression.


Subject(s)
Hepatocyte Growth Factor/physiology , Mitogens/physiology , Neoplasm Proteins , Proteoglycans/physiology , Amino Acid Sequence , Animals , Blood Coagulation/physiology , CHO Cells , Cell Line , Chondroitinases and Chondroitin Lyases/metabolism , Chromatography, Gel , Cricetinae , Glycosylation , Humans , Molecular Weight , Polysaccharide-Lyases/metabolism , Proteoglycans/chemistry
20.
J Mammary Gland Biol Neoplasia ; 6(3): 253-73, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11547896

ABSTRACT

Proteoglycans consist of a core protein and an associated glycosaminoglycan (GAG) chain of heparan sulfate, chondroitin sulfate, dermatan sulfate or keratan sulfate, which are attached to a serine residue. The core proteins of cell surface proteoglycans may be transmembrane, e.g., syndecan, or GPI-anchored, e.g., glypican. Many different cell surface and matrix proteoglycan core proteins are expressed in the mammary gland and in mammary cells in culture. The level of expression of these core proteins, the structure of their GAG chains, and their degradation are regulated by many of the effectors that control the development and function of the mammary gland. Regulatory proteins of the mammary gland that bind GAG include many growth factors and morphogens (fibroblast growth factors, hepatocyte growth factor/scatter factor, members of the midkine family, wnts), matrix proteins (collagen, fibronectin, and laminin), enzymes (lipoprotein lipase) and microbial surface proteins. Structural diversity within GAG chains ensures that each protein-GAG interaction is as specific as necessary and a number of sequences of saccharides that recognize individual proteins have been elucidated. The GAG-protein interactions serve to regulate the signal output of growth factor receptor tyrosine kinase and hence cell fate as well as the storage and diffusion of extracellular protein effectors. In addition, GAGs clearly coordinate stromal and epithelial development, and they are active participants in mediating cell-cell and cell-matrix interactions. Since a single proteoglycan, even if it carries a single GAG chain, can bind multiple proteins, proteoglycans are also likely to act as multireceptors which promote the integration of cellular signals.


Subject(s)
Breast/physiology , Cell Communication/physiology , Proteoglycans/metabolism , Receptors, Cell Surface/metabolism , Cell Line , Cell Membrane/metabolism , Female , Growth Substances/metabolism , Humans , Proteoglycans/chemistry , Proteoglycans/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...