Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Clin Nutr ; 85(6): 1527-32, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17556688

ABSTRACT

BACKGROUND: Low-fat, high-carbohydrate (LFHC) diets have been shown to increase plasma concentrations of lipoprotein(a) [Lp(a)] and of triacylglycerol- rich lipoproteins (TRLs). OBJECTIVE: We tested whether increases in plasma Lp(a) induced by an LFHC diet are related to changes in TRLs. DESIGN: Healthy men (study 1; n = 140) consumed for 4 wk each a high-fat, low-carbohydrate diet (HFLC; 40% fat, 45% carbohydrate) and an LFHC diet (20% fat, 65% carbohydrate). Plasma lipids; lipoproteins; apolipoprotein (apo) B, A-I, and C-III; and Lp(a) were measured at the end of each diet. In a second group of men following a similar dietary protocol (study 2; n = 33), we isolated apo(a)-containing particles by immunoaffinity chromatography and determined the concentrations of apo C-III in ultracentrifugally isolated subfractions of apo B-containing lipoproteins. RESULTS: In study 1, plasma concentrations of Lp(a) (P < 0.001), triacylglycerol (P < 0.001), apo B (P < 0.005), apo C-III (P < 0.005), and apo C-III in apo B-containing lipoproteins (non-HDL apo C-III) (P < 0.001) were significantly higher with the LFHC diet than with the HFLC diet. Stepwise multiple linear regression analysis showed that the association of changes in Lp(a) with changes in non-HDL apo C-III was independent of changes in body mass index, apo B, LDL cholesterol, and HDL cholesterol. Plasma lipid and lipoprotein changes were similar in study 2, and we found that both total apo C-III and the apo C-III content of apo(a)-containing particles were increased in a TRL fraction consisting predominantly of large VLDL particles [TRL-apo(a)]. CONCLUSIONS: The increase in plasma Lp(a) with an LFHC diet is significantly associated with an increase in non-HDL apo C-III. Enrichment of TRL-apo(a) with apo C-III may contribute to this dietary effect on Lp(a) concentrations.


Subject(s)
Apolipoprotein C-III/blood , Diet, Fat-Restricted , Dietary Carbohydrates/administration & dosage , Lipoprotein(a)/blood , Adult , Apolipoprotein C-III/chemistry , Apolipoproteins B/blood , Dietary Carbohydrates/pharmacology , Humans , Lipoproteins/blood , Lipoproteins/chemistry , Male , Triglycerides/blood
2.
Am J Clin Nutr ; 83(5): 1025-31; quiz 1205, 2006 May.
Article in English | MEDLINE | ID: mdl-16685042

ABSTRACT

BACKGROUND: Low-carbohydrate diets have been used to manage obesity and its metabolic consequences. OBJECTIVE: The objective was to study the effects of moderate carbohydrate restriction on atherogenic dyslipidemia before and after weight loss and in conjunction with a low or high dietary saturated fat intake. DESIGN: After 1 wk of consuming a basal diet, 178 men with a mean body mass index (in kg/m(2)) of 29.2 +/- 2.0 were randomly assigned to consume diets with carbohydrate contents of 54% (basal diet), 39%, or 26% of energy and with a low saturated fat content (7-9% of energy); a fourth group consumed a diet with 26% of energy as carbohydrate and 15% as saturated fat. After 3 wk, the mean weight loss (5.12 +/- 1.83 kg) was induced in all diet groups by a reduction of approximately 1000 kcal/d for 5 wk followed by 4 wk of weight stabilization. RESULTS: The 26%-carbohydrate, low-saturated-fat diet reduced triacylglycerol, apolipoprotein B, small LDL mass, and total:HDL cholesterol and increased LDL peak diameter. These changes were significantly different from those with the 54%-carbohydrate diet. After subsequent weight loss, the changes in all these variables were significantly greater and the reduction in LDL cholesterol was significantly greater with the 54%-carbohydrate diet than with the 26%-carbohydrate diet. With the 26%-carbohydrate diet, lipoprotein changes with the higher saturated fat intakes were not significantly different from those with the lower saturated fat intakes, except for LDL cholesterol, which decreased less with the higher saturated fat intake because of an increase in mass of large LDL. CONCLUSIONS: Moderate carbohydrate restriction and weight loss provide equivalent but nonadditive approaches to improving atherogenic dyslipidemia. Moreover, beneficial lipid changes resulting from a reduced carbohydrate intake were not significant after weight loss.


Subject(s)
Atherosclerosis/etiology , Diet, Carbohydrate-Restricted , Hyperlipidemias/therapy , Weight Loss , Apolipoproteins B/blood , Body Mass Index , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Diet, Fat-Restricted , Energy Intake , Humans , Hyperlipidemias/complications , Lipoproteins, LDL/blood , Male , Particle Size , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...