Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(6): 4541-4559, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38466661

ABSTRACT

The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.


Subject(s)
Neoplasms , Humans , Entropy , Methionine Adenosyltransferase/metabolism
2.
J Med Chem ; 66(13): 9147-9160, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37395055

ABSTRACT

The glycine to cysteine mutation at codon 12 of Kirsten rat sarcoma (KRAS) represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 14, AZD4747, a clinical development candidate for the treatment of KRASG12C-positive tumors, including the treatment of central nervous system (CNS) metastases. Building on our earlier discovery of C5-tethered quinazoline AZD4625, excision of a usually critical pyrimidine ring yielded a weak but brain-penetrant start point which was optimized for potency and DMPK. Key design principles and measured parameters that give high confidence in CNS exposure are discussed. During optimization, divergence between rodent and non-rodent species was observed in CNS exposure, with primate PET studies ultimately giving high confidence in the expected translation to patients. AZD4747 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Neoplasms , Animals , Humans , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Neoplasms/drug therapy , Drug Design , Glycine/therapeutic use , Mutation , Lung Neoplasms/drug therapy
3.
Chem Sci ; 13(37): 11183-11189, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320466

ABSTRACT

Quaternary benzylic centers are accessed with high atom and step economy by Ir-catalyzed alkene hydroarylation. These studies provide unique examples of the use of non-polarized 1,1-disubstituted alkenes in branch selective Murai-type hydro(hetero)arylations. Detailed mechanistic studies have been undertaken, and these indicate that the first irreversible step is the demanding alkene carbometallation process. Structure-reactivity studies show that the efficiency of this is critically dependent on key structural features of the ligand. Computational studies have been undertaken to rationalize this experimental data, showing how more sterically demanding ligands reduce the reaction barrier via predistortion of the reacting intermediate. The key insight disclosed here will underpin the ongoing development of increasingly sophisticated branch selective Murai hydroarylations.

4.
J Med Chem ; 65(9): 6940-6952, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35471939

ABSTRACT

KRAS is an archetypal high-value intractable oncology drug target. The glycine to cysteine mutation at codon 12 represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 21, AZD4625, a clinical development candidate for the treatment of KRASG12C positive tumors. Highlights include a quinazoline tethering strategy to lock out a bio-relevant binding conformation and an optimization strategy focused on the reduction of extrahepatic clearance mechanisms seen in preclinical species. Crystallographic analysis was also key in helping to rationalize unusual structure-activity relationship in terms of ring size and enantio-preference. AZD4625 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Antineoplastic Agents/pharmacology , Drug Design , Humans , Lung Neoplasms/drug therapy , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/pharmacology , Structure-Activity Relationship
5.
J Med Chem ; 63(9): 4468-4483, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32023060

ABSTRACT

Attempts to directly drug the important oncogene KRAS have met with limited success despite numerous efforts across industry and academia. The KRASG12C mutant represents an "Achilles heel" and has recently yielded to covalent targeting with small molecules that bind the mutant cysteine and create an allosteric pocket on GDP-bound RAS, locking it in an inactive state. A weak inhibitor at this site was optimized through conformational locking of a piperazine-quinazoline motif and linker modification. Subsequent introduction of a key methyl group to the piperazine resulted in enhancements in potency, permeability, clearance, and reactivity, leading to identification of a potent KRASG12C inhibitor with high selectivity and excellent cross-species pharmacokinetic parameters and in vivo efficacy.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Quinazolines/therapeutic use , Quinolones/therapeutic use , Allosteric Regulation , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Caco-2 Cells , Cell Line, Tumor , Drug Design , Humans , Male , Mice, Nude , Molecular Conformation , Mutation , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Quinolones/chemical synthesis , Quinolones/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
6.
J Med Chem ; 62(24): 11004-11018, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31710489

ABSTRACT

The RAS/MAPK pathway is a major driver of oncogenesis and is dysregulated in approximately 30% of human cancers, primarily by mutations in the BRAF or RAS genes. The extracellular-signal-regulated kinases (ERK1 and ERK2) serve as central nodes within this pathway. The feasibility of targeting the RAS/MAPK pathway has been demonstrated by the clinical responses observed through the use of BRAF and MEK inhibitors in BRAF V600E/K metastatic melanoma; however, resistance frequently develops. Importantly, ERK1/2 inhibition may have clinical utility in overcoming acquired resistance to RAF and MEK inhibitors, where RAS/MAPK pathway reactivation has occurred, such as relapsed BRAF V600E/K melanoma. We describe our structure-based design approach leading to the discovery of AZD0364, a potent and selective inhibitor of ERK1 and ERK2. AZD0364 exhibits high cellular potency (IC50 = 6 nM) as well as excellent physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties and has demonstrated encouraging antitumor activity in preclinical models.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Discovery , Imidazoles/therapeutic use , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazines/therapeutic use , Pyrimidines/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Apoptosis , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Drug Therapy, Combination , Female , Humans , Imidazoles/pharmacology , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mice, Nude , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Pyrazines/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Angew Chem Int Ed Engl ; 57(43): 14198-14202, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30171652

ABSTRACT

An IrI -system modified with a ferrocene derived bisphosphine ligand promotes α-selective arylation of styrenes by dual C-H functionalization. These studies offer a regioisomeric alternative to the Pd-catalyzed Fujiwara-Moritani reaction.

8.
J Am Chem Soc ; 140(30): 9351-9356, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30024748

ABSTRACT

Tertiary benzylic stereocenters are accessed in high enantioselectivity by Ir-catalyzed branch selective addition of anilide ortho-C-H bonds across styrenes and α-olefins. Mechanistic studies indicate that the stereocenter generating step is reversible.

9.
J Med Chem ; 60(8): 3438-3450, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28376306

ABSTRACT

There are a number of small-molecule inhibitors targeting the RAS/RAF/MEK/ERK signaling pathway that have either been approved or are in clinical development for oncology across a range of disease indications. The inhibition of ERK1/2 is of significant current interest, as cell lines with acquired resistance to BRAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition in preclinical models. This article reports on our recent work to identify novel, potent, and selective reversible ERK1/2 inhibitors from a low-molecular-weight, modestly active, and highly promiscuous chemical start point, compound 4. To guide and inform the evolution of this series, inhibitor binding mode information from X-ray crystal structures was critical in the rapid exploration of this template to compound 35, which was active when tested in in vivo antitumor efficacy experiments.


Subject(s)
MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Biological Availability , Cell Line, Tumor , Dogs , Drug Discovery , Humans , Methylation , Protein Kinase Inhibitors/pharmacokinetics
10.
J Med Chem ; 59(17): 7801-17, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27528113

ABSTRACT

Here we report the discovery and optimization of a series of bivalent bromodomain and extraterminal inhibitors. Starting with the observation of BRD4 activity of compounds from a previous program, the compounds were optimized for BRD4 potency and physical properties. The optimized compound from this campaign exhibited excellent pharmacokinetic profile and exhibited high potency in vitro and in vivo effecting c-Myc downregulation and tumor growth inhibition in xenograft studies. This compound was selected as the development candidate, AZD5153. The series showed enhanced potency as a result of bivalent binding and a clear correlation between BRD4 activity and cellular potency.


Subject(s)
Antineoplastic Agents/chemistry , Heterocyclic Compounds, 2-Ring/chemistry , Nuclear Proteins/antagonists & inhibitors , Piperazines/chemistry , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Caco-2 Cells , Cell Cycle Proteins , Crystallography, X-Ray , Dogs , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Heterocyclic Compounds, 2-Ring/pharmacology , Heterografts , Humans , Mice, SCID , Neoplasm Transplantation , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Conformation , Pyrazoles , Pyridazines , Rats , Stereoisomerism , Structure-Activity Relationship
11.
Cancer Res ; 76(11): 3307-18, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27020862

ABSTRACT

Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.


Subject(s)
Breast Neoplasms/drug therapy , Cinnamates/pharmacology , Estrogen Receptor Modulators/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Indoles/pharmacology , Mutation/genetics , Administration, Oral , Animals , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cinnamates/administration & dosage , Drug Evaluation, Preclinical , Estrogen Receptor Modulators/administration & dosage , Estrogen Receptor alpha/chemistry , Female , Humans , Indoles/administration & dosage , Mice , Mice, Inbred NOD , Mice, SCID , Protein Conformation , Rats , Tumor Cells, Cultured , Uterus/metabolism , Uterus/pathology , Xenograft Model Antitumor Assays
12.
J Med Chem ; 58(20): 8128-40, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26407012

ABSTRACT

The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.


Subject(s)
Antineoplastic Agents/metabolism , Cinnamates/chemistry , Cinnamates/metabolism , Estrogen Antagonists/chemical synthesis , Estrogen Antagonists/pharmacology , Estrogen Receptor Modulators/chemical synthesis , Estrogen Receptor Modulators/pharmacology , Indoles/chemistry , Indoles/metabolism , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Clinical Trials, Phase I as Topic , Down-Regulation/drug effects , Drug Design , Female , Humans , Injections, Intramuscular , X-Ray Diffraction
13.
J Med Chem ; 58(11): 4790-801, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25977981

ABSTRACT

The RAS/RAF/MEK/ERK signaling pathway has been targeted with a number of small molecule inhibitors in oncology clinical development across multiple disease indications. Importantly, cell lines with acquired resistance to B-RAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition by small molecule inhibitors. There are a number of selective, noncovalent ERK1/2 inhibitors reported along with the promiscuous hypothemycin (and related analogues) that act via a covalent mechanism of action. This article reports the identification of multiple series of highly selective covalent ERK1/2 inhibitors informed by structure-based drug design (SBDD). As a starting point for these covalent inhibitors, reported ERK1/2 inhibitors and a chemical series identified via high-throughput screening were exploited. These approaches resulted in the identification of selective covalent tool compounds for potential in vitro and in vivo studies to assess the risks and or benefits of targeting this pathway through such a mechanism of action.


Subject(s)
Drug Design , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 3/chemistry , Protein Kinase Inhibitors/pharmacology , Amino Acid Sequence , Cells, Cultured , Crystallography, X-Ray , Humans , Immunoblotting , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...