Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35683666

ABSTRACT

The present paper explores the two-dimensional (2D) incompressible mixed-convection flow of magneto-hydrodynamic Eyring-Powell nanofluid through a nonlinear stretching surface in the occurrence of a chemical reaction, entropy generation, and Bejan number effects. The main focus is on the quantity of energy that is lost during any irreversible process of entropy generation. The system of entropy generation was examined with energy efficiency. The set of higher-order non-linear partial differential equations are transformed by utilizing non-dimensional parameters into a set of dimensionless ordinary differential equations. The set of ordinary differential equations are solved numerically with the help of the finite element method (FEM). The illustrative set of computational results of Eyring-Powell (E-P) flow on entropy generation, Bejan number, velocity, temperature, and concentration distributions, as well as physical quantities are influenced by several dimensionless physical parameters that are also presented graphically and in table-form and discussed in detail. It is shown that the Schemit number increases alongside an increase in temperature, but the opposite trend occurs in the Prandtl number. Bejan number and entropy generation decline with the effect of the concentration diffusion parameter, and the results are shown in graphs.

2.
Sci Rep ; 12(1): 10392, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729198

ABSTRACT

The present investigation focuses on the characteristics of heat and mass transfer in the context of their applications. There has been a lot of interest in the use of non-Newtonian fluids in engineering and biological disciplines. Having such considerable attention to non-Newtonian fluids, the goal is to explore the flow of Jeffrey non-Newtonian convective fluid driven by a non-linear stretching surface considering the effect of nonlinear chemical reaction effect. The relevant set of difference equations was changed to ordinary equations by using a transformation matrix. To create numerical solutions for velocity and concentration fields, the Runge-Kutta fourth-order method along with the shooting approach is utilized. The innovative fragment of the present study is to scrutinize the magnetized viscous non-Newtonian fluid over extending sheet with internal heat transfer regarding the inspiration of nonlinear chemical reaction effect, which still not has been elaborated on in the available works to date. Consequently, in the restrictive sense, the existing work is associated with available work and originated in exceptional agreement. Graphs depict the effects of various variables on motion and concentration fields, like the Hartman number, Schmidt number, and chemical reaction parameter. The performance of chemical reaction factor, Schmidt number, Hartmann number, and Deborah numbers on velocities component, temperature, and concentration profiles are discussed through graphs. The effect of emerging parameters in the mass transfer is also investigated numerically and 3D configuration is also provided. It is observed that the Deborah numbers and Hartmann numbers have the same effect on velocity components. Also, the thickness of the boundary layer reduces as the Hartmann number increases. As the Schmit number grows, the concentration field decline. For destructive and generative chemical reactions, the concentration fields observed opposite effects. It is also noticed that the surface mas transfer reduces as the Hartmann number rises. The statistical findings of the heat-transfer rate are also documented and scrutinized.

3.
Entropy (Basel) ; 21(1)2019 Jan 10.
Article in English | MEDLINE | ID: mdl-33266768

ABSTRACT

This article examines the entropy analysis of magnetohydrodynamic (MHD) nanofluid flow of single and multiwall carbon nanotubes between two rotating parallel plates. The nanofluid flow is taken under the existence of Hall current and ion-slip effect. Carbon nanotubes (CNTs) are highly proficient heat transmission agents with bordering entropy generation and, thus, are considered to be a capable cooling medium. Entropy generation and Hall effect are mainly focused upon in this work. Using the appropriate similarity transformation, the central partial differential equations are changed to a system of ordinary differential equations, and an optimal approach is used for solution purposes. The resultant non-dimensional physical parameter appear in the velocity and temperature fields discussed using graphs. Also, the effect of skin fraction coefficient and Nusselt number of enclosed physical parameters are discussed using tables. It is observed that increased values of magnetic and ion-slip parameters reduce the velocity of the nanofluids and increase entropy generation. The results reveal that considering higher magnetic forces results in greater conduction mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...