Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Neuroanat ; 16: 868345, 2022.
Article in English | MEDLINE | ID: mdl-35601999

ABSTRACT

Most of the studies on neurochemical mapping, connectivity, and physiology in the hypothalamic region were carried out in rats and under the columnar morphologic paradigm. According to the columnar model, the entire hypothalamic region lies ventrally within the diencephalon, which includes preoptic, anterior, tuberal, and mamillary anteroposterior regions, and sometimes identifying dorsal, intermediate, and ventral hypothalamic partitions. This model is weak in providing little or no experimentally corroborated causal explanation of such subdivisions. In contrast, the modern prosomeric model uses different axial assumptions based on the parallel courses of the brain floor, alar-basal boundary, and brain roof (all causally explained). This model also postulates that the hypothalamus and telencephalon jointly form the secondary prosencephalon, separately from and rostral to the diencephalon proper. The hypothalamus is divided into two neuromeric (transverse) parts called peduncular and terminal hypothalamus (PHy and THy). The classic anteroposterior (AP) divisions of the columnar hypothalamus are rather seen as dorsoventral subdivisions of the hypothalamic alar and basal plates. In this study, we offered a prosomeric immunohistochemical mapping in the rat of hypothalamic cells expressing tyrosine hydroxylase (TH), which is the enzyme that catalyzes the conversion of L-tyrosine to levodopa (L-DOPA) and a precursor of dopamine. This mapping was also combined with markers for diverse hypothalamic nuclei [agouti-related peptide (Agrp), arginine vasopressin (Avp), cocaine and amphetamine-regulated transcript (Cart), corticotropin releasing Hormone (Crh), melanin concentrating hormone (Mch), neuropeptide Y (Npy), oxytocin/neurophysin I (Oxt), proopiomelanocortin (Pomc), somatostatin (Sst), tyrosine hidroxilase (Th), and thyrotropin releasing hormone (Trh)]. TH-positive cells are particularly abundant within the periventricular stratum of the paraventricular and subparaventricular alar domains. In the tuberal region, most labeled cells are found in the acroterminal arcuate nucleus and in the terminal periventricular stratum. The dorsal retrotuberal region (PHy) contains the A13 cell group of TH-positive cells. In addition, some TH cells appear in the perimamillary and retromamillary regions. The prosomeric model proved useful for determining the precise location of TH-positive cells relative to possible origins of morphogenetic signals, thus aiding potential causal explanation of position-related specification of this hypothalamic cell type.

2.
J Comp Neurol ; 494(6): 1007-30, 2006 Feb 20.
Article in English | MEDLINE | ID: mdl-16385490

ABSTRACT

The chick retinotectal system is a suitable model to investigate the mechanisms involved in the establishment of synaptic connections in whose refinement nitric oxide was implicated. The purpose of this work was to describe the developmental pattern of the nitric oxide synthase (NOS)-positive neurons as well as to determine if it is sensitive to changes in visual stimulation. The NADPH-diaphorase histochemical method was used to describe and quantify NOS neurons in normally stimulated and subnormally stimulated chickens. Nine types of NOS neurons were identified; seven of them express NOS until adulthood, while two of them show only a transient expression. The developmental pattern of NOS neurons follows the process of laminar segregation. It can be divided into three phases. The first includes the onset of NOS expression in periventricular neurons and the formation of a deep network of NOS fibers during early development. These neurons do not show any significant change in subnormally stimulated animals. The second phase includes the appearance of two transient NOS populations of bipolar neurons that occupy the intermediate layers during the optic fibers ingrowth. One of them significantly changes in subnormally stimulated chicks. The third phase occurs when the transitory expression of bipolar neurons decreases. It includes NOS expression in six neuronal populations that innervate the superficial retinorecipient layers. Most of these cells suffer plastic changes in subnormally stimulated chicks. The diversity of neuronal types with regard to their morphology, location, and sensitivity to visual stimulation strongly suggests that they serve different functions.


Subject(s)
Chick Embryo/anatomy & histology , NADPH Dehydrogenase/metabolism , Neurons/physiology , Photic Stimulation , Superior Colliculi , Animals , Cell Shape , Neurons/cytology , Neurons/enzymology , Nitric Oxide Synthase/metabolism , Superior Colliculi/anatomy & histology , Superior Colliculi/growth & development
3.
J Comp Neurol ; 448(4): 337-48, 2002 Jul 08.
Article in English | MEDLINE | ID: mdl-12115697

ABSTRACT

The developing mesencephalic trigeminal nucleus (nucleus of the fifth cranial nerve; Mes5) is composed of four neuron populations: 1) the medial group, located at the tectal commissure; 2) the lateral group distributed along the optic tectum hemispheres; 3) a group outside the neural tube; and 4) a population located at the posterior commissure. The present work aims to elucidate the site of appearance, temporal evolution, and spatial distribution of the four Mes5 populations during development. According to detailed qualitative observations Mes5 neurons appear as a primitive unique population along a thin dorsal medial band of the mesencephalon. According to quantitative analyses (changes in cell density along defined reference axes performed as a function of time and space), the definitive spatial pattern of Mes5 neurons results from a process of differential cell movements along the tangential plane of the tectal hemispheres. Radial migration does not have a relevant developmental role. Segregation of medial and lateral group populations depends on the intensity of the lateral displacements. The mesenchymal population appears as an outsider subset of neurons that migrate from the cephalic third of the neural tube dorsal midregion to the mesenchymal compartment. This process, together with the intensive lateral displacements that the insider subset undergoes, contributes to the disappearance of this transient population. We cannot find evidence indicating that neural crest-derived precursors enter the neural tube and differentiate into Mes5 neurons. Our results can be better interpreted in terms of the notion that a dorsal neural tube progenitor cell population behaves as precursor of both migrating peripheral descendants (neural crest) and intrinsic neurons (Mes5).


Subject(s)
Chick Embryo/physiology , Neurons/cytology , Superior Colliculi/embryology , Trigeminal Nuclei/embryology , Animals , Mesencephalon/embryology , Superior Colliculi/cytology , Time Factors , Trigeminal Nuclei/cytology
SELECTION OF CITATIONS
SEARCH DETAIL