Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(8): 083201, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36898107

ABSTRACT

Strong-field ionization of molecules releases electrons which can be accelerated and driven back to recombine with their parent ion, emitting high-order harmonics. This ionization also initiates attosecond electronic and vibrational dynamics in the ion, evolving during the electron travel in the continuum. Revealing this subcycle dynamics from the emitted radiation usually requires advanced theoretical modeling. We show that this can be avoided by resolving the emission from two families of electronic quantum paths in the generation process. The corresponding electrons have the same kinetic energy, and thus the same structural sensitivity, but differ by the travel time between ionization and recombination-the pump-probe delay in this attosecond self-probing scheme. We measure the harmonic amplitude and phase in aligned CO_{2} and N_{2} molecules and observe a strong influence of laser-induced dynamics on two characteristic spectroscopic features: a shape resonance and multichannel interference. This quantum-path-resolved spectroscopy thus opens wide prospects for the investigation of ultrafast ionic dynamics, such as charge migration.

2.
Faraday Discuss ; 194: 325-348, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27752675

ABSTRACT

Measuring the ultrafast dynamics of chiral molecules in the gas phase has been a long standing and challenging quest of molecular physics. The main limitation to reach that goal has been the lack of highly sensitive chiroptical measurement. By enabling chiral discrimination with up to several 10% of sensitivity, photoelectron circular dichroism (PECD) offers a solution to this issue. However, tracking ultrafast processes requires measuring PECD with ultrashort light pulses. Here we compare the PECD obtained with different light sources, from the extreme ultraviolet to the mid-infrared range, leading to different ionization regimes: single-photon, resonance-enhanced multiphoton, above-threshold and tunnel ionization. We use single and multiphoton ionization to probe the ultrafast relaxation of fenchone molecules photoexcited in their first Rydberg states. We show that time-resolved PECD enables revealing dynamics much faster than the population decay of the Rydberg states, demonstrating the high sensitivity of this technique to vibronic relaxation.

3.
Opt Lett ; 40(22): 5387-90, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26565881

ABSTRACT

We present a new method to characterize transverse vectorial light produced by high-harmonic generation (HHG). The incoherent sum of the two components of the electric field is measured using a bi-dimensional transient grating while one of the components is simultaneously characterized using two-source interferometry. The combination of these two interferometric setups enables the amplitude and phase measurement of the two vectorial components of the extreme ultraviolet radiation. We demonstrate the potential of this technique in the case of HHG in aligned nitrogen, revealing the vectorial properties of harmonics 9-17 of a Ti:sapphire laser.

SELECTION OF CITATIONS
SEARCH DETAIL
...