Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(6): e0304386, 2024.
Article in English | MEDLINE | ID: mdl-38865334

ABSTRACT

Rotating Polarization Wave (RPW) is a novel Low Power Wide Area Networks (LPWAN) technology for robust connectivity and extended coverage area as compared to other LPWAN technologies such as LoRa and Sigfox when no error detection and correction is employed. Since, IoT and Machine-to-Machine (M2M) communication demand high reliability, RPW with error correction can significantly enhance the communication reliability for critical IoT and M2M applications. Therefore, this study investigates the performance of RPW with single bit error detection and correction using Hamming codes to avoid substantial overhead. Hamming (7,4) coded RPW shows a remarkable improvement of more than 40% in error performance compared to uncoded RPW thereby making it a suitable candidate for IoT and M2M applications. Error performance of coded RPW outperforms coded Chirp Spread Spectrum (CSS) modulation used in LoRa under multipath conditions by 51%, demonstrating superior adaptability and robustness under dynamic channel conditions. These findings provide valuable insights into the ongoing developments in wireless communication systems whilst reporting Q-RPW model as a new and effective method to address the needs of developing LPWAN and IoT ecosystems.


Subject(s)
Wireless Technology , Computer Communication Networks , Humans
2.
J Biol Chem ; 300(8): 107497, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925329

ABSTRACT

Activation of G proteins through nucleotide exchange initiates intracellular signaling cascades essential for life processes. Under normal conditions, nucleotide exchange is regulated by the formation of G protein-G protein-coupled receptor complexes. Single point mutations in the Gα subunit of G proteins bypass this interaction, leading to loss of function or constitutive gain of function, which is closely linked with the onset of multiple diseases. Despite the recognized significance of Gα mutations in disease pathology, structural information for most variants is lacking, potentially due to inherent protein dynamics that pose challenges for crystallography. To address this, we leveraged an integrative spectroscopic and computational approach to structurally characterize seven of the most frequently observed and clinically relevant mutations in the stimulatory Gα subunit, GαS. A previously proposed allosteric model of Gα activation linked structural changes in the nucleotide-binding pocket with functionally important changes in interactions between switch regions. We investigated this allosteric connection in GαS by integrating data from variable temperature CD spectroscopy, which measured changes in global protein structure and stability, and molecular dynamics simulations, which observed changes in interaction networks between GαS switch regions. Additionally, saturation-transfer difference NMR spectroscopy was applied to observe changes in nucleotide interactions with residues within the nucleotide binding site. These data have enabled testing of predictions regarding how mutations in GαS result in loss or gain of function and evaluation of proposed structural mechanisms. The integration of experimental and computational data allowed us to propose a more nuanced classification of mechanisms underlying GαS gain-of-function and loss-of-function mutations.

3.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352316

ABSTRACT

Activation of G proteins stimulates ubiquitous intracellular signaling cascades essential for life processes. Under normal physiological conditions, nucleotide exchange is initiated upon the formation of complexes between a G protein and G protein-coupled receptor (GPCR), which facilitates exchange of bound GDP for GTP, subsequently dissociating the trimeric G protein into its Gα and Gßγ subunits. However, single point mutations in Gα circumvent nucleotide exchange regulated by GPCR-G protein interactions, leading to either loss-of-function or constitutive gain-of-function. Mutations in several Gα subtypes are closely linked to the development of multiple diseases, including several intractable cancers. We leveraged an integrative spectroscopic and computational approach to investigate the mechanisms by which seven of the most frequently observed clinically-relevant mutations in the α subunit of the stimulatory G protein result in functional changes. Variable temperature circular dichroism (CD) spectroscopy showed a bimodal distribution of thermal melting temperatures across all GαS variants. Modeling from molecular dynamics (MD) simulations established a correlation between observed thermal melting temperatures and structural changes caused by the mutations. Concurrently, saturation-transfer difference NMR (STD-NMR) highlighted variations in the interactions of GαS variants with bound nucleotides. MD simulations indicated that changes in local interactions within the nucleotide-binding pocket did not consistently align with global structural changes. This collective evidence suggests a multifaceted energy landscape, wherein each mutation may introduce distinct perturbations to the nucleotide-binding site and protein-protein interaction sites. Consequently, it underscores the importance of tailoring therapeutic strategies to address the unique challenges posed by individual mutations.

4.
ACS Cent Sci ; 9(4): 685-695, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37122463

ABSTRACT

Protein-polymer conjugates are widely used in many clinical and industrial applications, but lack of experimental data relating protein-polymer interactions to improved protein stability prevents their rational design. Advances in synthetic chemistry have expanded the palette of polymer designs, including development of nonlinear architectures, novel monomer chemical scaffolds, and control of hydrophobicity, but more experimental data are needed to transform advances in chemistry into next generation conjugates. Using an integrative biophysical approach, we investigated the molecular basis for polymer-based thermal stabilization of a human galectin protein, Gal3C, conjugated with polymers of linear and nonlinear architectures, different degrees of polymerization, and varying hydrophobicities. Independently varying the degree of polymerization and polymer architecture enabled delineation of specific polymer properties contributing to improved protein stability. Insights from NMR spectroscopy of the polymer-conjugated Gal3C backbone revealed patterns of protein-polymer interactions shared between linear and nonlinear polymer architectures for thermally stabilized conjugates. Despite large differences in polymer chemical scaffolds, protein-polymer interactions resulting in thermal stabilization appear conserved. We observed a clear relation between polymer length and protein-polymer thermal stability shared among chemically different polymers. Our data indicate a wide range of polymers may be useful for engineering conjugate properties and provide conjugate design criteria.

5.
Cell Rep ; 42(4): 112320, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37027306

ABSTRACT

The functional properties of G protein-coupled receptors (GPCRs) are intimately associated with the different components in their cellular environment. Among them, sodium ions have been proposed to play a substantial role as endogenous allosteric modulators of GPCR-mediated signaling. However, this sodium effect and the underlying mechanisms are still unclear for most GPCRs. Here, we identified sodium as a negative allosteric modulator of the ghrelin receptor GHSR (growth hormone secretagogue receptor). Combining 23Na-nuclear magnetic resonance (NMR), molecular dynamics, and mutagenesis, we provide evidence that, in GHSR, sodium binds to the allosteric site conserved in class A GPCRs. We further leveraged spectroscopic and functional assays to show that sodium binding shifts the conformational equilibrium toward the GHSR-inactive ensemble, thereby decreasing basal and agonist-induced receptor-catalyzed G protein activation. All together, these data point to sodium as an allosteric modulator of GHSR, making this ion an integral component of the ghrelin signaling machinery.


Subject(s)
Receptors, Ghrelin , Sodium , Allosteric Regulation , Allosteric Site , Ghrelin/metabolism , Ions , Receptors, Ghrelin/metabolism , Signal Transduction , Sodium/metabolism
6.
Cell Rep ; 41(12): 111844, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36543140

ABSTRACT

G protein-coupled receptor (GPCR) conformational plasticity enables formation of ternary signaling complexes with intracellular proteins in response to binding extracellular ligands. We investigate the dynamic process of GPCR complex formation in solution with the human A2A adenosine receptor (A2AAR) and an engineered Gs protein, mini-Gs. 2D nuclear magnetic resonance (NMR) data with uniform stable isotope-labeled A2AAR enabled a global comparison of A2AAR conformations between complexes with an agonist and mini-Gs and with an agonist alone. The two conformations are similar and show subtle differences at the receptor intracellular surface, supporting a model whereby agonist binding alone is sufficient to populate a conformation resembling the active state. However, an A2AAR "hot spot" connecting the extracellular ligand-binding pocket to the intracellular surface is observed to be highly dynamic in the ternary complex, suggesting a mechanism for allosteric connection between the bound G protein and the drug-binding pocket involving structural plasticity of the "toggle switch" tryptophan.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , Humans , GTP-Binding Proteins/metabolism , Molecular Conformation , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Magnetic Resonance Spectroscopy , Ligands , Receptor, Adenosine A2A/metabolism , Protein Conformation
7.
Angew Chem Int Ed Engl ; 61(40): e202203784, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35922375

ABSTRACT

PEGylation is a promising approach to address the central challenge of applying biologics, i.e., lack of protein stability in the demanding environment of the human body. Wider application is hindered by lack of atomic level understanding of protein-PEG interactions, preventing design of conjugates with predicted properties. We deployed an integrative structural and biophysical approach to address this critical challenge with the PEGylated carbohydrate recognition domain of human galectin-3 (Gal3C), a lectin essential for cell adhesion and potential biologic. PEGylation dramatically increased Gal3C thermal stability, forming a stable intermediate and redirecting its unfolding pathway. Structural details revealed by NMR pointed to a potential role of PEG localization facilitated by charged residues. Replacing these residues subtly altered the protein-PEG interface and thermal unfolding behavior, providing insight into rationally designing conjugates while preserving PEGylation benefits.


Subject(s)
Biological Products , Galectin 3 , Carbohydrates , Humans , Polyethylene Glycols/chemistry , Protein Stability
8.
Sensors (Basel) ; 22(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35270975

ABSTRACT

LoRa is based on the chirp spread spectrum (CSS) modulation, which has been developed for low power and long-range wireless Internet of Things (IoT) communications. The structure of LoRa signals makes their decoding performance extremely sensitive to synchronization errors. To alleviate this constraint, we propose a modification of the LoRa physical layer, which we refer to as differential CSS (DCSS), associated with an original synchronization algorithm. Based on this modification, we are able to demodulate the received signals without performing a complete frequency synchronization and by tolerating some timing synchronization errors. Hence, our receiver can handle ultra narrow band LoRa-like signals since it has no limitation on the maximum carrier frequency offset, as is actually the case in the deployed LoRa receivers. In addition, in the presence of the Doppler shift varying along the packet duration, DCSS shows better performance than CSS, which makes our proposed receiver a good candidate for communication with a low-Earth orbit (LEO) satellite.

9.
Methods ; 180: 79-88, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32911074

ABSTRACT

G protein-coupled receptors (GPCRs) represent the largest class of "druggable" proteins in the human genome. For more than a decade, crystal structures and, more recently, cryoEM structures of GPCR complexes have provided unprecedented insight into GPCR drug binding and cell signaling. Nevertheless, structure determination of receptors in complexes with weakly binding molecules or complex polypeptides remains especially challenging, including for hormones, many of which have so far eluded researchers. Nuclear magnetic resonance (NMR) spectroscopy has emerged as a promising approach to determine structures of ligands bound to their receptors and to provide insights into the dynamics of GPCR-bound drugs. The capability to investigate compounds with weak binding affinities has also been leveraged in NMR applications to identify novel lead compounds in drug screening campaigns. We review recent structural biology studies of GPCR ligands by NMR, highlighting new methodologies enabling studies of GPCRs with native sequences and in native-like membrane environments that provide insights into important drugs and endogenous ligands.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Neuropeptides/chemistry , Receptors, G-Protein-Coupled/chemistry , Humans , Ligands , Lipid Bilayers/chemistry , Models, Molecular , Pharmaceutical Preparations/chemistry , Protein Binding
10.
Proc Natl Acad Sci U S A ; 116(51): 25649-25658, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31757855

ABSTRACT

Phthiocerol dimycocerosate (DIM) is a major virulence factor of the pathogen Mycobacterium tuberculosis (Mtb). While this lipid promotes the entry of Mtb into macrophages, which occurs via phagocytosis, its molecular mechanism of action is unknown. Here, we combined biophysical, cell biology, and modeling approaches to reveal the molecular mechanism of DIM action on macrophage membranes leading to the first step of Mtb infection. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry showed that DIM molecules are transferred from the Mtb envelope to macrophage membranes during infection. Multiscale molecular modeling and 31P-NMR experiments revealed that DIM adopts a conical shape in membranes and aggregates in the stalks formed between 2 opposing lipid bilayers. Infection of macrophages pretreated with lipids of various shapes uncovered a general role for conical lipids in promoting phagocytosis. Taken together, these results reveal how the molecular shape of a mycobacterial lipid can modulate the biological response of macrophages.


Subject(s)
Lipids/chemistry , Macrophages/microbiology , Mycobacterium tuberculosis , Tuberculosis/microbiology , Cell Line , Cell Membrane/chemistry , Cell Membrane/microbiology , Host-Pathogen Interactions/physiology , Humans , Macrophages/chemistry , Molecular Dynamics Simulation , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/physiology , Nuclear Magnetic Resonance, Biomolecular
11.
Proc Natl Acad Sci U S A ; 116(35): 17525-17530, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31416915

ABSTRACT

Ghrelin plays a central role in controlling major biological processes. As for other G protein-coupled receptor (GPCR) peptide agonists, the structure and dynamics of ghrelin bound to its receptor remain obscure. Using a combination of solution-state NMR and molecular modeling, we demonstrate that binding to the growth hormone secretagogue receptor is accompanied by a conformational change in ghrelin that structures its central region, involving the formation of a well-defined hydrophobic core. By comparing its acylated and nonacylated forms, we conclude that the ghrelin octanoyl chain is essential to form the hydrophobic core and promote access of ghrelin to the receptor ligand-binding pocket. The combination of coarse-grained molecular dynamics studies and NMR should prove useful in improving our mechanistic understanding of the complex conformational space explored by a natural peptide agonist when binding to its GPCR. Such information should also facilitate the design of new ghrelin receptor-selective drugs.


Subject(s)
Ghrelin/chemistry , Ghrelin/metabolism , Models, Molecular , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Acylation , Animals , Binding Sites , Humans , Magnetic Resonance Spectroscopy , Protein Binding , Protein Conformation , Signal Transduction , Structure-Activity Relationship
12.
Vitam Horm ; 111: 17-47, 2019.
Article in English | MEDLINE | ID: mdl-31421700

ABSTRACT

Dynorphin is a neuropeptide involved in pain, addiction and mood regulation. It exerts its activity by binding to the kappa opioid receptor (KOP) which belongs to the large family of G protein-coupled receptors. The dynorphin peptide was discovered in 1975, while its receptor was cloned in 1993. This review will describe: (a) the activities and physiological functions of dynorphin and its receptor, (b) early structure-activity relationship studies performed before cloning of the receptor (mostly pharmacological and biophysical studies of peptide analogues), (c) structure-activity relationship studies performed after cloning of the receptor via receptor mutagenesis and the development of recombinant receptor expression systems, (d) structural biology of the opiate receptors culminating in X-ray structures of the four opioid receptors in their inactive state and structures of MOP and KOP receptors in their active state. X-ray and EM structures are combined with NMR data, which gives complementary insight into receptor and peptide dynamics. Molecular modeling greatly benefited from the availability of atomic resolution 3D structures of receptor-ligand complexes and an example of the strategy used to model a dynorphin-KOP receptor complex using NMR data will be described. These achievements have led to a better understanding of the complex dynamics of KOP receptor activation and to the development of new ligands and drugs.


Subject(s)
Dynorphins/chemistry , Dynorphins/physiology , Receptors, Opioid/chemistry , Receptors, Opioid/physiology , Amino Acid Sequence , Animals , Cloning, Molecular , Dynorphins/genetics , Humans , Models, Molecular , Molecular Structure , Mutagenesis, Site-Directed , Pain , Protein Binding , Receptors, Opioid/genetics , Structure-Activity Relationship , Substance-Related Disorders
SELECTION OF CITATIONS
SEARCH DETAIL
...