Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 399: 130572, 2024 May.
Article in English | MEDLINE | ID: mdl-38492651

ABSTRACT

Aqueous phase reforming has been explored for renewable H2 production from waste biomass. Promising results have been reported for pyrolysis bio-oil aqueous fractions (AFB), but economical assessments are needed to determine process feasibility, which requires both energy consumption minimization and optimal H2 valorization. This work compares different alternatives using process simulation and economic evaluation computational tools. Experimental results and a specific thermodynamic model are used to set mass balances. An adequate heat integration allows to reduce the process energy demand, covering the 100 % of the reactor duty. Optimal H2 unit cost is achieved if part of the produced H2 is valorized for energy self-covering and the rest is commercialized. Renewable H2 net production of c.a. 3.3 kgH2/m3 of treated AFB at a preliminary 1-2 €/kg unit cost is estimated, which can be considered as competitive with green H2, even though a case of diluted AFB is considered.


Subject(s)
Hydrogen , Polyphenols , Pyrolysis , Rivers , Plant Oils , Water , Biomass
2.
Ind Eng Chem Res ; 62(34): 13324-13339, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-38356643

ABSTRACT

A multiscale strategy was used to conceptually design and economically analyze a scalable and sustainable process for dissolving and regenerating keratin from chicken feathers by using a sodium acetate-urea deep eutectic solvent as the reacting media. In this study, the recovery and recycling of the solvent were also considered. Moreover, molecular modeling of the solvent, keratin and its derivatives, property estimation of the corresponding mixtures, and simulation of the different process alternatives proposed, including the equipment sizing, estimation of energy needs, and economic analysis were presented. A quasi-planar cluster governed by H-bond interactions resulted in the most stable configuration of the deep eutectic solvent. Molecular models having molecular weights higher than 1.400 g/mol were created to represent the keratin species, where the most abundant amino acids in the feathers were included and conveniently ordered in the chain. Property estimations performed with the conductor-like screening model-real solvent succeeded in describing the main features of the interactions between the keratin derivatives and the solvents used. The process analysis performed on several alternatives showed that the process is technically and economically viable at the industrial scale, the costs being strongly dependent on the excess of both the solvent used to dissolve keratin and the water added for its regeneration. Several options to improve the process and reduce the costs are discussed.

3.
Materials (Basel) ; 15(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36143549

ABSTRACT

The layer-structured monoclinic Li2MnO3 is a key material, mainly due to its role in Li-ion batteries and as a precursor for adsorbent used in lithium recovery from aqueous solutions. In the present work, we used first-principles calculations based on density functional theory (DFT) to study the crystal structure, optical phonon frequencies, infra-red (IR), and Raman active modes and compared the results with experimental data. First, Li2MnO3 powder was synthesized by the hydrothermal method and successively characterized by XRD, TEM, FTIR, and Raman spectroscopy. Secondly, by using Local Density Approximation (LDA), we carried out a DFT study of the crystal structure and electronic properties of Li2MnO3. Finally, we calculated the vibrational properties using Density Functional Perturbation Theory (DFPT). Our results show that simulated IR and Raman spectra agree well with the observed phonon structure. Additionally, the IR and Raman theoretical spectra show similar features compared to the experimental ones. This research is useful in investigations involving the physicochemical characterization of Li2MnO3 material.

4.
Chemphyschem ; 19(7): 801-815, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29316116

ABSTRACT

Zwitterion ionic liquids (ZIs) are compounds in which both counterions are covalently tethered, conferring them with unique characteristics; however, most of their properties are still unknown, representing a bottleneck to exploit their practical applications. Herein, the molecular and fluid properties of ZIs and their mixtures were explored by means of quantum chemical analysis based on the density functional theory (DFT) and COSMO-RS method, and compared against homologous ionic liquids (ILs) to provide a comprehensive overview of the effect of the distinct structures on their physicochemical and thermodynamic behavior. Overall, ZIs were revealed as compounds with higher polarity and stronger hydrogen-bonding capacity, implying higher density, viscosity, melting point, and even lower volatility than structurally similar ILs. The phase equilibrium of binary and ternary systems supports stronger attractive interactions between ZIs and polar compounds, whereas higher liquid-liquid immiscibility with nonpolar compounds may be expected. Ultimately, the performance of ZIs in the wider context of separation processes is illustrated, while providing molecular insights to allow their selection and design for relevant applications.

5.
J Phys Chem B ; 118(9): 2442-50, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24521179

ABSTRACT

The use of ionic liquid mixtures (IL-IL mixtures) is being investigated for fine solvent properties tuning of the IL-based systems. The scarce available studies, however, evidence a wide variety of mixing behaviors (from almost ideal to strongly nonideal), depending on both the structure of the IL components and the property considered. In fact, the adequate selection of the cations and anions involved in IL-IL mixtures may ensure the absence or presence of two immiscible liquid phases. In this work, a systematic computational study of the mixing behavior of IL-IL systems is developed by means of COSMO-RS methodology. Liquid-liquid equilibrium (LLE) and excess enthalpy (H(E)) data of more than 200 binary IL-IL mixtures (including imidazolium-, pyridinium-, pyrrolidinium-, ammonium-, and phosphonium-based ILs) are calculated at different temperatures, comparing to literature data when available. The role of the interactions between unlike cations and anions on the mutual miscibility/immiscibility of IL-IL mixtures was analyzed. On the basis of proposed guidelines, a new class of immiscible IL-IL mixtures was reported, which only is formed by imidazolium-based compounds.

6.
J Phys Chem B ; 117(24): 7388-98, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23688030

ABSTRACT

The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone.


Subject(s)
Acetone/chemistry , Ionic Liquids/chemistry , Quantum Theory , Thermodynamics , Magnetic Resonance Spectroscopy
7.
Phys Chem Chem Phys ; 12(8): 1991-2000, 2010 Feb 28.
Article in English | MEDLINE | ID: mdl-20145869

ABSTRACT

A COSMO-RS descriptor (S(sigma-profile)) has been used in quantitative structure-property relationship (QSPR) studies by a neural network (NN) for the prediction of empirical solvent polarity E(T)(N) scale of neat ionic liquids (ILs) and their mixtures with organic solvents. S(sigma-profile) is a two-dimensional quantum chemical parameter which quantifies the polar electronic charge of chemical structures on the polarity (sigma) scale. Firstly, a radial basis neural network exact fit (RBNN) is successfully optimized for the prediction of E(T)(N), the solvatochromic parameter of a wide variety of neat organic solvents and ILs, including imidazolium, pyridinium, ammonium, phosphonium and pyrrolidinium families, solely using the S(sigma-profile) of individual molecules and ions. Subsequently, a quantitative structure-activity map (QSAM), a new concept recently developed, is proposed as a valuable tool for the molecular understanding of IL polarity, by relating the E(T)(N) polarity parameter to the electronic structure of cations and anions given by quantum-chemical COSMO-RS calculations. Finally, based on the additive character of the S(sigma-profile) descriptor, we propose to simulate the mixture of IL-organic solvents by the estimation of the S(sigma-profile)(Mixture) descriptor, defined as the weighted mean of the S(sigma-profile) values of the components. Then, the E(T)(N) parameters for binary solvent mixtures, including ILs, are accurately predicted using the S(sigma-profile)(Mixture) values from the RBNN model previously developed for pure solvents. As result, we obtain a unique neural network tool to simulate, with similar reliability, the E(T)(N) polarity of a wide variety of pure ILs as well as their mixtures with organic solvents, which exhibit significant positive and negative deviations from ideality.

8.
Phys Chem Chem Phys ; 10(39): 5967-75, 2008 Oct 21.
Article in English | MEDLINE | ID: mdl-18825284

ABSTRACT

A new COSMO-RS descriptor (S(sigma-profile)) has been used in quantitative structure-property relationship (QSPR) studies based on neural networks (NN) for the prediction of polarity/polarizability scales of pure solvents and mixtures. S(sigma-profile) is a two-dimensional quantum chemical parameter which quantifies the polar electronic charge on the polarity (sigma) scale. Firstly, radial base neural networks (RBNN) are successfully optimized for the prediction of polarizability (SP) and polarity/polarizability (SPP) scales of pure solvents using the S(sigma-profile) of individual molecules. Subsequently, based on the additive character of the S(sigma-profile) parameter, we propose to simulate the solvents mixture by the estimation of S descriptor, defined as the weighted mean of S(sigma-profile) values of the components. Then, the SPP parameters for binary and ternary mixtures are accurately predicted using the S values into the RBNN model previously developed for pure solvents. As result, we obtain a unique neural network tool to simulate, with similar reliability, the polarity/polarizability of a wide variety of pure organic solvents as well as binary and ternary mixtures which exhibit significant deviations from ideality.


Subject(s)
Computer Simulation , Models, Chemical , Neural Networks, Computer , Quantitative Structure-Activity Relationship , Quantum Theory , Predictive Value of Tests , Reproducibility of Results , Solvents/chemistry
9.
J Org Chem ; 72(8): 2967-77, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17358079

ABSTRACT

Subphthalocyanine (SubPc)-fused dimers and trimers bearing fluorine, iodine, and thioether peripheral substituents were synthesized and characterized. Absorption spectroscopy and electrochemical studies revealed (i) that the substituents have a strong effect on the electronic properties of the macrocycles and (ii) that there is good communication between the subphthalocyaninic moieties within the oligomeric structures. Theoretical calculations at DFT/6-31G(d,p) computational level and electron density studies support the experimental findings. The frontier orbitals in the dimers and trimers were also shown to be significantly altered with respect to those of SubPcs as a consequence of the extension of the conjugation associated with symmetry breaking. Time-dependent density functional theory calculations reproduced the differences observed in the UV-vis spectra of the fused dimers and the monomeric SubPcs.

10.
J Phys Chem B ; 111(1): 168-80, 2007 Jan 11.
Article in English | MEDLINE | ID: mdl-17201441

ABSTRACT

A quantum-chemical computational approach to accurately predict the nuclear magnetic resonance (NMR) properties of 1-alkyl-3-methylimidazolium ionic liquids has been performed by the gauge-including atomic orbitals method at the B3LYP/6-31++G** level using different simulated ionic liquid environments. The first molecular model chosen to describe the ionic liquid system includes the gas-phase optimized structures of ion pairs and separated ions of a series of imidazolium salts containing methyl, butyl, and octyl substituents and PF6-, BF4-, and Br- anions. In addition, a continuum polarizable model of solvation has been applied to predict the effects of the medium polarity on the molecular properties of 1,3-dimethylimidazolium hexafluorophosphate (MmimPF6). Furthermore, the specific acidic and basic solute-solvent interactions have been simulated by a discrete solvation model based on molecular clusters formed by MmimPF6 species and a discrete number of water molecules. The computational prediction of the NMR spectra allows a consistent interpretation of the dispersed experimental evidence in the literature. The following are main contributions of this work: (a) Theoretical results state the presence of a chemical equilibrium between ion-pair aggregates and solvent-separated counterions of 1-alkyl-3-methylimidazolium salts which is tuned by the solvent environment; thus, strong specific (acidic and basic) and nonspecific (polarity and polarizability) solvent interactions are predicted favoring the dissociated ionic species. (b) The calculated 1H and 13C NMR properties of these ionic liquids are revealed as highly dependent on the nature of solute-solvent interactions. Thus, the chemical shift of the hydrogen atom in position two of the imidazolium ring is deviated to high values by the specific interactions with water molecules, whereas nonspecific interaction with water (as a solvent) affects, in the opposite direction, this 1H NMR parameter. (c) Last, current calculations support the presence of hydrogen bonding between counterions, suggesting the importance of this interaction in the properties of the solvent in the 1-alkyl-3-methylimidazolium ionic liquids.

11.
J Phys Chem B ; 109(9): 3800-6, 2005 Mar 10.
Article in English | MEDLINE | ID: mdl-16851428

ABSTRACT

Second order nonlinear optical properties of a series of trinitrosubphthalocyanine (SubPc) isomers were studied experimentally by electric field induced second harmonic (EFISH) generation and hyper Rayleigh scattering (HRS). These experimental values were compared to the ones obtained theoretically employing both sum over states (SOS) and finite field (FF) methods. From these studies, it was shown that the dipolar contributions to the beta tensor are very much dependent on the substitution pattern at the periphery of the subphthalocyanine macrocycle, whereas the octupolar contributions remain mostly unchanged. Consequently, it was deduced that SubPc is extremely well suited for the decoupling of octupolar and dipolar contribution to the NLO response.

SELECTION OF CITATIONS
SEARCH DETAIL
...