Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Hear Res ; 280(1-2): 109-21, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21565263

ABSTRACT

Anuran auditory nerve fibers (ANF) tuned to low frequencies display unusual frequency-dependent adaptation which results in a more phasic response to signals above best frequency (BF) and a more tonic response to signals below. A network model of the first two layers of the anuran auditory system was used to test the contribution of this dynamic peripheral adaptation on two-tone suppression and amplitude modulation (AM) tuning. The model included a peripheral sandwich component, leaky-integrate-and-fire cells and adaptation was implemented by means of a non-linear increase in threshold weighted by the signal frequency. The results of simulations showed that frequency-dependent adaptation was both necessary and sufficient to produce high-frequency-side two-tone suppression for the ANF and cells of the dorsal medullary nucleus (DMN). It seems likely that both suppression and this dynamic adaptation share a common mechanism. The response of ANFs to AM signals was influenced by adaptation and carrier frequency. Vector strength synchronization to an AM signal improved with increased adaptation. The spike rate response to a carrier at BF was the expected flat function with AM rate. However, for non-BF carrier frequencies the response showed a weak band-pass pattern due to the influence of signal sidebands and adaptation. The DMN received inputs from three ANFs and when the frequency tuning of inputs was near the carrier, then the rate response was a low-pass or all-pass shape. When most of the inputs were biased above or below the carrier, then band-pass responses were observed. Frequency-dependent adaptation enhanced the band-pass tuning for AM rate, particularly when the response of the inputs was predominantly phasic for a given carrier. Different combinations of inputs can therefore bias a DMN cell to be especially well suited to detect specific ranges of AM rates for a particular carrier frequency. Such selection of inputs would clearly be advantageous to the frog in recognizing distinct spectral and temporal parameters in communication calls.


Subject(s)
Acoustic Stimulation , Adaptation, Physiological/physiology , Anura/physiology , Auditory Pathways/physiology , Models, Biological , Action Potentials/physiology , Animal Communication , Animals , Evoked Potentials, Auditory , Models, Animal
2.
Article in English | MEDLINE | ID: mdl-12879356

ABSTRACT

Big brown bats can discriminate between echoes that alternate in delay (jitter) by as little as 10-15 ns and echoes that are stationary in delay. This delay hyperacuity seems so extreme that it has been rejected in favor of an explanation in terms of artifacts in echoes, most likely spectral in nature, that presumably are correlated with delay. Using different combinations of digital, analog, and cable delays, we dissociated the overall delay of jittering echoes from the size of the analog component of delay, which alone is presumed to determine the strength of the apparatus artifact. The bats' performance remains invariant with respect to the overall delay of the jittering echoes, not with respect to the amount of analog delay. This result is not consistent with the possible use of delay-related artifacts produced by the analog delay devices. Moreover, both electronic and acoustic measurements disclose no spectral cues or impedance-mismatch reflections in delayed signals, just time-delays. The absence of artifacts from the apparatus and the failure of overlap and interference from reverberation to account for the 10-ns result means that closing the gap between the level of temporal accuracy plausibly explained from physiology and the level observed in behavior may require a better understanding of the physiology.


Subject(s)
Chiroptera/physiology , Cues , Echolocation/physiology , Acoustic Stimulation , Animals , Calibration , Discrimination, Psychological/physiology , Time Perception/physiology
3.
J Neurosci ; 19(8): 2897-905, 1999 Apr 15.
Article in English | MEDLINE | ID: mdl-10191307

ABSTRACT

Recognition of acoustic patterns in natural sounds depends on the transmission of temporal information. Octopus cells of the mammalian ventral cochlear nucleus form a pathway that encodes the timing of firing of groups of auditory nerve fibers with exceptional precision. Whole-cell patch recordings from octopus cells were used to examine how the brevity and precision of firing are shaped by intrinsic conductances. Octopus cells responded to steps of current with small, rapid voltage changes. Input resistances and membrane time constants averaged 2.4 MOmega and 210 microseconds, respectively (n = 15). As a result of the low input resistances of octopus cells, action potential initiation required currents of at least 2 nA for their generation and never occurred repetitively. Backpropagated action potentials recorded at the soma were small (10-30 mV), brief (0.24-0.54 msec), and tetrodotoxin-sensitive. The low input resistance arose in part from an inwardly rectifying mixed cationic conductance blocked by cesium and potassium conductances blocked by 4-aminopyridine (4-AP). Conductances blocked by 4-AP also contributed to the repolarization of the action potentials and suppressed the generation of calcium spikes. In the face of the high membrane conductance of octopus cells, sodium and calcium conductances amplified depolarizations produced by intracellular current injection over a time course similar to that of EPSPs. We suggest that this transient amplification works in concert with the shunting influence of potassium and mixed cationic conductances to enhance the encoding of the onset of synchronous auditory nerve fiber activity.


Subject(s)
Cochlear Nucleus/physiology , Neural Conduction/physiology , 4-Aminopyridine/pharmacology , Action Potentials/physiology , Animals , Cesium/pharmacology , Cochlear Nucleus/cytology , Cochlear Nucleus/drug effects , Excitatory Postsynaptic Potentials , In Vitro Techniques , Mice , Mice, Inbred Strains , Microelectrodes , Neural Conduction/drug effects , Patch-Clamp Techniques
4.
J Comp Neurol ; 400(4): 519-28, 1998 Nov 02.
Article in English | MEDLINE | ID: mdl-9786412

ABSTRACT

Golgi cells are poised to integrate multimodal influences by participating in circuits involving granule cells in the cochlear nuclei. To understand their physiological role, intracellular recordings were made from anatomically identified Golgi cells in slices of the cochlear nuclei from mice. Cell bodies, dendrites, and terminals for all seven labeled cells were restricted to the narrow plane of the superficial granule cell domain over the ventral cochlear nucleus. The axonal arborization was the most striking feature of all Golgi cells; a dense plexus of terminals covered an area 200-400 microm in diameter in the vicinity of the cell body and dendrites. Axonal beads often surrounded granule cell bodies, indicating that granule cells are probable targets. Cells had input resistances up to 130 M omega and fired regular, overshooting action potentials. Golgi cells probably receive auditory nerve input, because shocks to the cut end of the auditory nerve excited Golgi cells with excitatory postsynaptic potentials (EPSPs). The latency of EPSPs shortened to a minimum and the amplitude of EPSPs grew in several steps as the strength of shocks was increased. The minimum latency of EPSPs in Golgi cells was on average 1.3 milliseconds, 0.6 milliseconds longer than the minimum latencies of EPSPs in nearby octopus and T stellate cells. The long latency raises the possibility that Golgi cells receive input from slowly conducting, unmyelinated auditory nerve fibers. Golgi cells are also excited by interneurons with N-methyl-D-aspartate receptors, probably granule cells, because repetitive shocks and single shocks in the absence of extracellular Mg2+ evoked late EPSPs that were reversibly blocked by DL-2-amino-5-phosphono-valeric acid.


Subject(s)
Cochlear Nucleus/cytology , Cochlear Nucleus/physiology , Interneurons/cytology , Interneurons/physiology , Animals , Electric Stimulation , Electrophysiology , Excitatory Postsynaptic Potentials/physiology , In Vitro Techniques , Mice , Mice, Inbred CBA , Neural Inhibition/physiology , Synapses/physiology
5.
Proc Natl Acad Sci U S A ; 95(21): 12647-52, 1998 Oct 13.
Article in English | MEDLINE | ID: mdl-9770540

ABSTRACT

Echolocating big brown bats (Eptesicus fuscus) broadcast ultrasonic frequency-modulated (FM) biosonar sounds (20-100 kHz frequencies; 10-50 microseconds periods) and perceive target range from echo delay. Knowing the acuity for delay resolution is essential to understand how bats process echoes because they perceive target shape and texture from the delay separation of multiple reflections. Bats can separately perceive the delays of two concurrent electronically generated echoes arriving as little as 2 microseconds apart, thus resolving reflecting points as close together as 0.3 mm in range (two-point threshold). This two-point resolution is roughly five times smaller than the shortest periods in the bat's sounds. Because the bat's broadcasts are 2,000-4,500 microseconds long, the echoes themselves overlap and interfere with each other, to merge together into a single sound whose spectrum is shaped by their mutual interference depending on the size of the time separation. To separately perceive the delays of overlapping echoes, the bat has to recover information about their very small delay separation that was transferred into the spectrum when the two echoes interfered with each other, thus explicitly reconstructing the range profile of targets from the echo spectrum. However, the bat's 2-microseconds resolution limit is so short that the available spectral cues are extremely limited. Resolution of delay seems overly sharp just for interception of flying insects, which suggests that the bat's biosonar images are of higher quality to suit a wider variety of orientation tasks, and that biosonar echo processing is correspondingly more sophisticated than has been suspected.


Subject(s)
Auditory Perception , Chiroptera/physiology , Ultrasonics , Animals
6.
J Comp Physiol A ; 182(1): 65-79, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9447715

ABSTRACT

Neurons in the inferior colliculus (IC) of the awake big brown bat, Eptesicus fuscus, were examined for joint frequency and latency response properties which could register the timing of the bat's frequency-modulated (FM) biosonar echoes. Best frequencies (BFs) range from 10 kHz to 100 kHz with 50% tuning widths mostly from 1 kHz to 8 kHz. Neurons respond with one discharge per 2-ms tone burst or FM stimulus at a characteristic latency in the range of 3-45 ms, with latency variability (SD) of 50 microseconds to 4-6 ms or more. BF distribution is related to biosonar signal structure. As observed previously, on a linear frequency scale BFs appear biased to lower frequencies, with 20-40 kHz overrepresented. However, on a hyperbolic frequency (linear period) scale BFs appear more uniformly distributed, with little overrepresentation. The cumulative proportion of BFs in FM1 and FM2 bands reconstructs a scaled version of the spectrogram of FM broadcasts. Correcting FM latencies for absolute BF latencies and BF time-in-sweep reveals a subset of IC cells which respond dynamically to the timing of their BFs in FM sweeps. Behaviorally, Eptesicus perceives echo delay and phase with microsecond or even submicrosecond accuracy and resolution, but even with use of phase-locked FM and tone-burst stimuli the cell-by-cell precision of IC time-frequency registration seems inadequate by itself to account for the temporal acuity exhibited by the bat.


Subject(s)
Chiroptera/physiology , Echolocation/physiology , Inferior Colliculi/physiology , Animals , Inferior Colliculi/cytology , Neurons/physiology , Reaction Time , Sensory Thresholds/physiology
7.
J Neurophysiol ; 79(1): 51-63, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9425176

ABSTRACT

Auditory information is carried from the cochlear nuclei to the inferior colliculi through six parallel ascending pathways, one of which is through stellate cells of the ventral cochlear nuclei (VCN) through the trapezoid body. To characterize and identify the synaptic influences on T stellate cells, intracellular recordings were made from anatomically identified stellate cells in parasagittal slices of murine cochlear nuclei. Shocks to the auditory nerve consistently evoked five types of synaptic responses in T stellate cells, which reflect sources intrinsic to the cochlear nuclear complex. 1) Monosynaptic excitatory postsynaptic potentials (EPSPs) that were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX), an antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, probably reflected activation by auditory nerve fibers. Electrophysiological estimates indicate that about five auditory nerve fibers converge on one T stellate cell. 2) Disynaptic, glycinergic inhibitory postsynaptic potentials (IPSPs) arise through inhibitory interneurons in the VCN or in the dorsal cochlear nucleus (DCN). 3) Slow depolarizations, the source of which has not been identified, that lasted between 0.2 and 1 s and were blocked by -2-amino-5-phosphonovaleric acid (APV), the N-methyl-D-aspartate (NMDA) receptor antagonist. 4) Rapid, late glutamatergic EPSPs are polysynaptic and may arise from other T stellate cells. 5) Trains of late glycinergic IPSPs after single or repetitive shocks match the responses of D stellate cells, showing that D stellate cells are one source of glycinergic inhibition to T stellate cells. The source of late, polysynaptic EPSPs and IPSPs was assessed electrophysiologically and pharmacologically. Late synaptic responses in T stellate cells were enhanced by repetitive stimulation, indicating that the interneurons from which they arose should fire trains of action potentials in responses to trains of shocks. Late EPSPs and late IPSPs were blocked by APV and enhanced by the removal of Mg2+, indicating that the interneurons were driven at least in part through NMDA receptors. Bicuculline, a gamma-aminobutyric acid-A (GABAA) receptor antagonist, enhanced the late PSPs, indicating that GABAergic inhibition suppresses both the glycinergic interneurons responsible for the trains of IPSPs in T-stellate cells and the interneuron responsible for late EPSPs in T stellate cells. The glycinergic interneurons that mediate the series of IPSPs are intrinsic to the ventral cochlear nucleus because long series of IPSPs were recorded from T stellate cells in slices in which the DCN was removed. These experiments indicate that T stellate cells are a potential source of late EPSPs and that D stellate cells are a potential source for trains of late IPSPs.


Subject(s)
Auditory Perception/physiology , Cochlear Nucleus/cytology , Cochlear Nucleus/physiology , Neurons/physiology , Synapses/physiology , Vestibulocochlear Nerve/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Bicuculline/pharmacology , Electric Stimulation , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials , Glutamic Acid/pharmacology , In Vitro Techniques , Interneurons/drug effects , Interneurons/physiology , Mice , Mice, Inbred CBA , Mice, Inbred ICR , Models, Neurological , Nerve Fibers/drug effects , Nerve Fibers/physiology , Neurons/cytology , Neurons/drug effects , Picrotoxin/pharmacology , Quinoxalines/pharmacology , Receptors, AMPA/drug effects , Receptors, AMPA/physiology , Receptors, GABA-A/physiology , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/physiology , Strychnine/pharmacology
8.
J Acoust Soc Am ; 100(3): 1764-76, 1996 Sep.
Article in English | MEDLINE | ID: mdl-8817902

ABSTRACT

Measurements of external ear transfer functions in the echolocating bat Eptesicus fuscus have revealed a prominent spectral notch that decreases in center frequency (50 to 30-35 kHz) as elevation decreases [Wotton et al., J. Acoust. Soc. Am. 98, 1423-1445 (1995)]. To examine the influence of this notch, four Eptesicus were trained to discriminate between two sets of electronically generated artificial echoes. The negative (unrewarded) stimulus contained a test spectral notch at a specific frequency that varied from 30 to 50 kHz, while the positive (rewarded) stimulus contained no test notch. The vertical position of the loudspeakers delivering these simulated echoes was changed daily. When echoes were returned from an elevation at which the external ear introduced a spectral notch at the same frequency as the test notch, then the discrimination should have been difficult. The bats' performance conformed to this prediction: All bats discriminated the presence of a 35-kHz notch at all elevations except -10 degrees. As the frequency of the synthesized notch increased, the elevation at which bats could not perform the discrimination also increased. The movement of the bat's "blind spot" for the test notch of different frequencies followed the movement of the external ear notch at different elevations.


Subject(s)
Chiroptera , Ear, External/physiology , Echolocation , Animals , Videotape Recording
9.
Biol Bull ; 191(1): 109-21, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8776847

ABSTRACT

The echolocating big brown bat, Eptesicus fuscus, broadcasts brief frequency-modulated (FM) ultrasonic sounds and perceives objects from echoes of these sounds returning to its ears. Eptesicus is an insectivorous species that uses sonar to locate and track flying prey. Although the bat normally hunts in open areas, it nevertheless is capable of chasing insects into cluttered environments such as vegetation, where it completes interceptions in much the same manner as in the open except that it has to avoid the obstacles as well as catch the insect. During pursuit, the bat shortens its sonar signals and increases their rate of emission as it closes in to seize the target, and it keeps its head pointed at the insect throughout the maneuver. In the terminal stage of interception, the bat makes rapid adjustments in its flight-path and body posture to capture the insect, and these reactions occur whether the bat is pursuing its prey in the open or close to obstacles such as vegetation. Insects can be distinguished from other objects by the spectrum and phase of their echoes, and Eptesicus is very good at discriminating these acoustic features. To identify the insect in the open, but especially to distinguish which object is the insect in clutter, the bat must have some means for representing these features throughout the interception maneuver. Moreover, continuity for perception of these features is necessary to keep track of the prey in complex surroundings, so the nature of the auditory representations for the spectrum and phase of echoes has to be conserved across the approach, tracking, and terminal stages. The first problem is that representation of changes in the phase of echoes requires neural responses in the bat's auditory system to have temporal precision in the microsecond range, which seems implausible from conventional single-unit studies in the bat's inferior colliculus, where the temporal jitter of responses typically is hundreds of microseconds. Another problem is that echoes do not explicitly evoke neural responses in the inferior colliculus distinct from responses evoked by the broadcast during the terminal stage because the delay of echoes is too short for responsiveness to recover from the emissions. In contrast, each emission and each echo evokes its own responses during the approach and tracking stages of pursuit. How does the bat consistently represent the phase of echoes in spite of these evident limitations in neural responses? Local multiunit responses recorded from the inferior colliculus of Eptesicus reveal a novel format for encoding the phase of echoes at all stages of interception. Changes in echo phase (0 degree or 180 degrees) produce shifts in the latency of responses to the emission by hundreds of microseconds, an unexpected finding that demonstrates the existence of expanded time scales in neural responses representing the target at all stages of pursuit.


Subject(s)
Chiroptera , Echolocation/physiology , Insecta/anatomy & histology , Perception/physiology , Predatory Behavior/physiology , Animals
10.
J Neurophysiol ; 70(5): 1988-2009, 1993 Nov.
Article in English | MEDLINE | ID: mdl-8294966

ABSTRACT

1. In Eptesicus the auditory cortex, as defined by electrical activity recorded from microelectrodes in response to tone bursts, FM sweeps, and combinations of FM sweeps, encompasses an average cortical surface area of 5.7 mm2. This area is large with respect to the total cortical surface area and reflects the importance of auditory processing to this species of bat. 2. The predominant pattern of organization in response to tone bursts observed in each cortex is tonotopic, with three discernible divisions revealed by our data. However, although cortical best-frequency (BF) maps from most of the individual bats are similar, no two maps are identical. The largest division contains an average of 84% of the auditory cortical surface area, with BF tonotopically mapped from high to low along the anteroposterior axis and is part of the primary auditory cortex. The medium division encompasses an average of 13% of the auditory cortical surface area, with highly variable BF organization across bats. The third region is the smallest, with an average of only 3% of auditory cortical surface area and is located at the anterolateral edge of the cortex. This region is marked by a reversal of the tonotopic axis and a restriction in the range of BFs as compared with the larger, tonotopically organized division. 3. A population of cortical neurons was found (n = 39) in which each neuron exhibited two BF threshold minima (BF1 and BF2) in response to tone bursts. These neurons thus have multipeaked frequency threshold tuning curves. In Eptesicus the majority of multipeaked frequency-tuned neurons (n = 27) have threshold minima at frequencies that correspond to a harmonic ratio of three-to-one. In contrast, the majority of multipeaked neurons in cats have threshold minima at frequencies in a ratio of three-to-two. A three-to-one harmonic ratio corresponds to the "spectral notches" produced by interference between overlapping echoes from multiple reflective surfaces in complex sonar targets. Behavioral experiments have demonstrated the ability of Eptesicus to use spectral interference notches for perceiving target shape, and this subpopulation of multipeaked frequency-tuned neurons may be involved in coding of spectral notches. 4. The auditory cortex contains delay-tuned neurons that encode target range (n = 99). Most delay-tuned neurons respond poorly to tones or individual FM sweeps and require combinations of FM sweeps. They are combination sensitive and delay tuned.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Auditory Perception/physiology , Chiroptera/physiology , Echolocation/physiology , Pitch Discrimination/physiology , Animals , Auditory Pathways/physiology , Auditory Threshold/physiology , Brain Mapping , Cochlear Nerve/physiology , Inferior Colliculi/physiology , Neurons/physiology , Reaction Time/physiology , Superior Colliculi/physiology
11.
J Acoust Soc Am ; 93(6): 3374-89, 1993 Jun.
Article in English | MEDLINE | ID: mdl-8326064

ABSTRACT

Discharge patterns of single eighth nerve fibers in the bullfrog, Rana catesbeiana, were analyzed in response to signals consisting of multiple harmonics of a common, low-amplitude fundamental frequency. The signals were chosen to reflect the frequency and amplitude spectrum of the bullfrog's species-specific advertisement call. The phase spectrum of the signals was manipulated to produce envelopes that varied in their shapes from impulselike (sharp) to noiselike (flattened). Peripheral responses to these signals were analyzed by computing the autocorrelation functions of the spike trains and their power spectra, as well as by constructing period histograms over the time intervals of the low-frequency harmonics. In response to a phase aligned signal with an impulsive envelope, most fibers, regardless of their characteristic frequencies or place of origin within the inner ear, synchronize to the fundamental frequency of the signal. The temporal patterns of fiber discharge to these stimuli are not typically captured by that stimulus harmonic closet to the fiber characteristic frequency, as would be expected from a spectral coding mechanism for periodicity extraction, but instead directly reflect the periodicity of the stimulus envelope. Changing the phase relations between the individual harmonics constituting the signal produces changes in temporal discharge patterns of some fibers by shifting predominant synchronization away from the fundamental frequency to the low-frequency spectral peak in the complex stimuli. The proportion of fibers whose firing is captured by the fundamental frequency decreases as the waveform envelope becomes less impulselike. Fiber characteristic frequency is not highly correlated with the harmonic number to which synchronization is strongest. The higher-harmonic spectral fine structure of the signals is not reflected in fiber temporal response, regardless of the shape of the stimulus envelope, even for those harmonics within the range of phase locking to simple sinusoids. Increasing stimulus intensity also shifts the synchronized responses of some fibers away from the fundamental frequency to one of the low-frequency harmonics in the stimuli. These data suggest that the synchronized firing of bullfrog eighth nerve fibers operates to extract the waveform periodicity of complex, multiple-harmonic stimuli, and this periodicity extraction is influenced by the phase spectrum and temporal fine structure of the stimuli. The similarity in response patterns of amphibian papilla and basilar papilla fibers argues that the frog auditory system employs primarily a temporal mechanism for extraction of first harmonic periodicity.


Subject(s)
Periodicity , Reaction Time/physiology , Vestibulocochlear Nerve/physiology , Acoustic Stimulation , Animals , Auditory Perception/physiology , Cochlea/physiology , Pitch Perception/physiology , Rana catesbeiana
12.
J Comp Physiol A ; 172(1): 57-69, 1993 Feb.
Article in English | MEDLINE | ID: mdl-8445580

ABSTRACT

1. Activity of individual eight nerve fibers in the bullfrog, Rana catesbeiana, was measured in response to complex, multiple-frequency stimuli differing in both frequency composition and harmonic structure. Stimuli were chosen to parallel types of stimuli producing "pitch-shift" effects in humans. 2. The fundamental frequency of harmonic stimuli can be extracted from the autocorrelation of fiber firing, whether the fundamental is physically present in the stimulus or is a "missing" fundamental. The spectral fine-structure of harmonic stimuli is not robustly represented in fiber temporal response. These effects are seen in both AP and BP fibers. 3. The pseudoperiod of inharmonic stimuli is represented by synchronization to successive high-amplitude peaks in the stimulus envelope. Temporal responses to stimuli with high center frequencies are similar regardless of whether their frequency components are harmonically or inharmonically related. Responses remain dominated by the envelope periodicity, and no "pitch-shift" is signaled. In response to stimuli with low center frequencies, temporal responses signal a "pitch-shift" between harmonic and inharmonic complexes. Both AP and BP fibers show these effects. 4. These data suggest that bullfrog peripheral fibers extract the periodicity of complex stimuli by time-domain rather than frequency-domain coding.


Subject(s)
Periodicity , Pitch Perception/physiology , Rana catesbeiana/physiology , Vestibulocochlear Nerve/physiology , Animals , Electrophysiology
13.
J Acoust Soc Am ; 91(5): 2831-44, 1992 May.
Article in English | MEDLINE | ID: mdl-1629476

ABSTRACT

A population study of auditory nerve responses in the bullfrog, Rana catesbeiana, analyzed the relative contributions of spectral and temporal coding in representing a complex, species-specific communication signal at different stimulus intensities and in the presence of background noise. At stimulus levels of 70 and 80 dB SPL, levels which approximate that received during communication in the natural environment, average rate profiles plotted over fiber characteristic frequency do not reflect the detailed spectral fine structure of the synthetic call. Rate profiles do not change significantly in the presence of background noise. In ambient (no noise) and low noise conditions, both amphibian papilla and basilar papilla fibers phase lock strongly to the waveform periodicity (fundamental frequency) of the synthetic advertisement call. The higher harmonic spectral fine structure of the synthetic call is not accurately reflected in the timing of fiber firing, because firing is "captured" by the fundamental frequency. Only a small number of fibers synchronize preferentially to any harmonic in the call other than the first, and none synchronize to any higher than the third, even when fiber characteristic frequency is close to one of these higher harmonics. Background noise affects fiber temporal responses in two ways: It can reduce synchronization to the fundamental frequency, until fiber responses are masked; or it can shift synchronization from the fundamental to the second or third harmonic of the call. This second effect results in a preservation of temporal coding at high noise levels. These data suggest that bullfrog eighth nerve fibers extract the waveform periodicity of multiple-harmonic stimuli primarily by a temporal code.


Subject(s)
Vestibulocochlear Nerve/physiology , Vocalization, Animal/physiology , Acoustic Stimulation , Animals , Nerve Fibers/physiology , Noise , Periodicity , Rana catesbeiana , Sound Spectrography , Time Factors
15.
J Comp Physiol A ; 167(5): 589-616, 1990 Nov.
Article in English | MEDLINE | ID: mdl-2074548

ABSTRACT

1. Behavioral experiments with jittering echoes examined acoustic images of sonar targets in the echolocating bat, Eptesicus fuscus, along the echo delay or target range axis. Echo phase, amplitude, bandwidth, and signal-to-noise ratio were manipulated to assess the underlying auditory processes for image formation. 2. Fine delay acuity is about 10 ns. Calibration and control procedures indicate that this represents temporal acuity rather than spectral discrimination. Jitter discrimination curves change in phase when the phase of one jittering echo is shifted by 180 degrees relative to the other, showing that echo phase is involved in delay estimation. At an echo detectability index of about 36 dB, fine acuity is 40 ns, which is approximately as predicted for the delay accuracy of an ideal receiver. 3. Compound performance curves for 0 degrees and 180 degrees phase conditions match the crosscorrelation function of the echoes. The locations of both 0 degrees and 180 degrees phase peaks in the performance curves shift along the time axis by an amount that matches neural amplitude-latency trading in Eptesicus, confirming a temporal basis for jitter discrimination.


Subject(s)
Chiroptera/physiology , Discrimination, Psychological/physiology , Echolocation/physiology , Acoustic Stimulation , Animals , Body Weight/physiology , Cues
16.
J Comp Physiol A ; 166(4): 449-70, 1990 Feb.
Article in English | MEDLINE | ID: mdl-2332837

ABSTRACT

1. FM echolocating bats (Eptesicus fuscus) were trained to discriminate between a two-component complex target and a one-component simple target simulated by electronically-returned echoes in a series of experiments that explore the composition of the image of the two-component target. In Experiment I, echoes for each target were presented sequentially, and the bats had to compare a stored image of one target with that of the other. The bats made errors when the range of the simple target corresponded to the range of either glint in the complex target, indicating that some trace of the parts of one image interfered with perception of the other image. In Experiment II, echoes were presented simultaneously as well as sequentially, permitting direct masking of echoes from one target to the other. Changes in echo amplitude produced shifts in apparent range whose pattern depended upon the mode of echo presentation. 2. Eptesicus perceives images of complex sonar targets that explicitly represent the location and spacing of discrete glints located at different ranges. The bat perceives the target's structure in terms of its range profile along a psychological range axis using a combination of echo delay and echo spectral representations that together resemble a spectrogram of the FM echoes. The image itself is expressed entirely along a range scale that is defined with reference to echo delay. Spectral information contributes to the image by providing estimates of the range separation of glints, but it is transformed into these estimates. 3. Perceived absolute range is encoded by the timing of neural discharges and is vulnerable to shifts caused by neural amplitude-latency trading, which was estimated at 13 to 18 microseconds per dB from N1 and N4 auditory evoked potentials in Eptesicus. Spectral cues representing the separation of glints within the target are transformed into estimates of delay separations before being incorporated into the image. However, because they are encoded by neural frequency tuning rather than the time-of-occurrence of neural discharges, the perceived range separation of glints in images is not vulnerable to amplitude-latency shifts. 4. The bat perceives an image that is displayed in the domain of time or range. The image receives no evident spectral contribution beyond what is transformed into delay estimates. Although the initial auditory representation of FM echoes is spectrogram-like, the time, frequency, and amplitude dimensions of the spectrogram appear to be compressed into an image that has only time and amplitude dimensions.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Chiroptera/physiology , Echolocation/physiology , Orientation/physiology , Vestibulocochlear Nerve/physiology , Acoustic Stimulation , Action Potentials , Animals , Auditory Pathways/physiology , Time Factors
17.
J Acoust Soc Am ; 84(6): 2081-91, 1988 Dec.
Article in English | MEDLINE | ID: mdl-3265711

ABSTRACT

Responses of individual eighth-nerve fibers in the bullfrog (Rana catesbeiana) were measured to tone bursts at best frequency against a background of continuous, broadband masking noise. These data were used to calculate critical masking ratios to describe the fibers' responses to tones embedded in noise. In the frequency response range of the amphibian papilla (100-1000 Hz), critical ratios increase with tone frequency. Critical ratios of basilar papilla fibers (1000-2000 Hz) are generally higher than those of amphibian papilla fibers. Critical ratios are also significantly related to fiber threshold such that fibers with high thresholds, regardless of their best frequencies, have higher critical ratios and are thus less selective to signals embedded in noise. Critical ratios based on neural responses show a somewhat different frequency-dependent trend than do critical ratios based on psychophysical data presented previously for this species [A. M. Simmons, J. Acoust. Soc. Am. 83, 1087-1092 (1988a)]. In addition, these neural critical ratios do not appear to be level independent, as are psychophysical critical ratios. The data suggest that frequency selectivity of hearing in the bullfrog as measured behaviorally is probably not mediated solely by spectral filtering in the auditory periphery.


Subject(s)
Perceptual Masking/physiology , Pitch Discrimination/physiology , Rana catesbeiana/physiology , Vestibulocochlear Nerve/physiology , Animals , Auditory Threshold/physiology , Nerve Fibers/physiology , Psychoacoustics
18.
Urology ; 29(1): 66-7, 1987 Jan.
Article in English | MEDLINE | ID: mdl-3798634

ABSTRACT

We believe this represents the first known case of Group D2 pyelonephritis in a seventy-two-year-old white man. Previous to this report D2 organisms have been associated only with alkaline-encrusted cystitis and struvite stones in urology.


Subject(s)
Corynebacterium Infections/diagnosis , Pyelonephritis/etiology , Aged , Corynebacterium/isolation & purification , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...