Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Toxicol Pharmacol ; 107: 104398, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403142

ABSTRACT

Ubiquitin Proteasomal System (UPS) and autophagy dysregulation initiate cancer. These pathways are regulated by zinc finger proteins. Trivalent inorganic arsenic (iAs) displaces zinc from zinc finger proteins disrupting functions of important cellular proteins. The effect of chronic environmental iAs exposure (100 nM) on UPS has not been studied. We tested the hypothesis that environmental iAs exposure suppresses UPS, activating autophagy as a compensatory mechanism. We exposed skin (HaCaT and Ker-CT; independent quadruplicates) and lung (BEAS-2B; independent triplicates) cell cultures to 0 or 100 nM iAs for 7 or 8 weeks. We quantified ER stress (XBP1 splicing employing Reverse Transcriptase -Polymerase Chain Reaction), proteasomal degradation (immunoblots), and initiation and completion of autophagy (immunoblots). We demonstrate that chronic iAs exposure suppresses UPS, initiates autophagy, but suppresses autophagic protein degradation in skin and lung cell lines. Our data suggest that chronic iAs exposure inhibits autophagy which subsequently suppresses UPS.


Subject(s)
Arsenic , Arsenicals , Arsenic/toxicity , Proteolysis , Proteasome Endopeptidase Complex , Autophagy
2.
Toxicol Appl Pharmacol ; 479: 116730, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37866707

ABSTRACT

Chronic arsenic exposure through drinking water is a global health issue, affecting >200 million people. Arsenic is a group I human carcinogen and causes chromosomal instability (CIN). Arsenic exposure is the second most common cause of skin cancer after UV radiation. hsa-miR-186 is overexpressed in arsenic-induced squamous cell carcinoma relative to premalignant hyperkeratosis. Among predicted targets of hsa-miR-186 are cell cycle regulators including regulators of mitotic progression. Disruption of mitotic progression can contribute to CIN. Thus, we hypothesized that hsa-miR-186 overexpression contributes to malignant transformation of arsenic exposed HaCaT cells by induction of CIN. Stable clones of HaCaT cells transfected with pEP-hsa-miR-186 expression vector or empty vector were maintained under puromycin selection and exposed to 0 or 100 nM NaAsO2 and cultured for 29 weeks. HaCaT clones overexpressing hsa-miR-186 and exposed to NaAsO2 showed increased CIN and anchorage independent growth at 29 weeks in a stochastic manner, in contrast to unexposed empty vector transfected clones. These results suggest that clonal variability mediates arsenic-induced carcinogenesis in hsa-miR-186 overexpressing human keratinocytes.


Subject(s)
Arsenic , MicroRNAs , Humans , Arsenic/toxicity , Arsenic/metabolism , Cell Line , MicroRNAs/genetics , MicroRNAs/metabolism , Carcinogenesis/genetics , Keratinocytes/metabolism , Clone Cells , Phenotype , Chromosomal Instability
3.
Adv Pharmacol ; 96: 203-240, 2023.
Article in English | MEDLINE | ID: mdl-36858773

ABSTRACT

Arsenic-induced carcinogenesis is a worldwide health problem. Identifying the molecular mechanisms responsible for the induction of arsenic-induced cancers is important for developing treatment strategies. MicroRNA (miRNA) dysregulation is known to affect development and progression of human cancer. Several studies have identified an association between altered miRNA expression in cancers from individuals chronically exposed to arsenic and in cell models for arsenic-induced carcinogenesis. This chapter provides a comprehensive review for miRNA dysregulation in arsenic-induced cancer.


Subject(s)
Arsenic , MicroRNAs , Humans , Carcinogenesis
4.
Ecotoxicol Environ Saf ; 256: 114823, 2023 May.
Article in English | MEDLINE | ID: mdl-36989553

ABSTRACT

Chronic inorganic arsenic (iAs) exposure in drinking water is a global issue affecting >225 million people. Skin is a major target organ for iAs. miRNA dysregulation and chromosomal instability (CIN) are proposed mechanisms of iAs-induced carcinogenesis. CIN is a cancer hallmark and tetraploid cells can better tolerate increase in chromosome number and aberration, contributing to the evolution of CIN. miR-186 is overexpressed in iAs-induced squamous cell carcinoma relative to iAs-induced hyperkeratosis. Bioinformatic analysis indicated that miR-186 targets mRNAs of important cell cycle regulators including mitotic checkpoint serine/threonine kinase B (BUB1) and cell division cycle 27 (CDC27). We hypothesized that miR-186 overexpression contributes to iAs-induced transformation of keratinocytes by targeting mitotic regulators leading to induction of CIN. Ker-CT cells, a near diploid human keratinocyte cell line, were transduced with miR-186 overexpressing or scrambled control lentivirus. Stable clones were isolated after puromycin selection. Clones transduced with lentivirus expressing either a scrambled control miRNA or miR-186 were maintained with 0 or 100 nM iAs for 4 weeks. Unexposed scrambled control clones were considered as passage matched controls. Chronic iAs exposure increased miR-186 expression in miR-186 clones. miR-186 overexpression significantly reduced CDC27 levels irrespective of iAs exposure. The percentage of tetraploid or aneuploid cells was increased in iAs exposed miR-186 clones. Aneuploidy can arise from a tetraploid intermediate. Suppression of CDC27 by miR-186 may lead to impairment of mitotic checkpoint complex formation and its ability to maintain cell cycle arrest leading to chromosome misalignment. As a result, cells overexpressing miR-186 and chronically exposed to iAs may have incorrect chromosome segregation and CIN. These data suggest that dysregulation of miRNA by iAs mediates tetraploidy, aneuploidy and chromosomal instability contributing to iAs-induced carcinogenesis.


Subject(s)
Arsenic , MicroRNAs , Humans , Tetraploidy , MicroRNAs/genetics , Aneuploidy , Carcinogenesis , Keratinocytes , Chromosomal Instability
5.
Toxicol Appl Pharmacol ; 446: 116042, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35513056

ABSTRACT

An estimated 220 million people worldwide are chronically exposed to inorganic arsenic (iAs) primarily as a result of drinking iAs-contaminated water. Chronic iAs exposure is associated with a plethora of human diseases including skin lesions and multi-organ cancers. iAs is a known clastogen, inducing DNA double strand breaks (DSBs) in both exposed human populations and in vitro. However, iAs does not directly interact with DNA, suggesting that other mechanisms, such as inhibition of DNA repair and DNA Damage Response (DDR) signaling, may be responsible for iAs-induced clastogenesis. Recent RNA-sequencing data from human keratinocytes (HaCaT cells) indicate that mRNAs for phosphatases important for resolution of DDR signaling are induced as a result of chronic iAs exposure prior to epithelial to mesenchymal transition. Here, we report that phosphorylation of ataxia telengectasia mutated (ATM) protein at a critical site (pSer1981) important for DDR signaling, and downstream CHEK2 activation, are significantly reduced in two human keratinocyte lines as a result of chronic iAs exposure. Moreover, RAD50 expression is reduced in both of these lines, suggesting that suppression of the MRE11-RAD50-NBS1 (MRN) complex may be responsible for reduced ATM activation. Lastly, we demonstrate that DNA double strand break accumulation and DNA damage is significantly higher in human keratinocytes with low dose iAs exposure. Thus, inhibition of the MRN complex in iAs-exposed cells may be responsible for reduced ATM activation and reduced DSB repair by homologous recombination (HR). As a result, cells may favor error-prone DSB repair pathways to fix damaged DNA, predisposing them to chromosomal instability (CIN) and eventual carcinogenesis often seen resulting from chronic iAs exposure.


Subject(s)
Arsenic , Ataxia Telangiectasia Mutated Proteins , Keratinocytes , Arsenic/metabolism , Arsenic/toxicity , Ataxia , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Repair , DNA-Binding Proteins/genetics , Epithelial-Mesenchymal Transition , Humans , Keratinocytes/metabolism , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism
6.
Environ Health Perspect ; 130(1): 17011, 2022 01.
Article in English | MEDLINE | ID: mdl-35072517

ABSTRACT

BACKGROUND: Chronic arsenic exposure via drinking water is associated with an increased risk of developing cancer and noncancer chronic diseases. Pre-mRNAs are often subject to alternative splicing, generating mRNA isoforms encoding functionally distinct protein isoforms. The resulting imbalance in isoform species can result in pathogenic changes in critical signaling pathways. Alternative splicing as a mechanism of arsenic-induced toxicity and carcinogenicity is understudied. OBJECTIVE: This study aimed to accurately profile differential alternative splicing events in human keratinocytes induced by chronic arsenic exposure that might play a role in carcinogenesis. METHODS: Independent quadruplicate cultures of immortalized human keratinocytes (HaCaT) were maintained continuously for 28 wk with 0 or 100 nM sodium arsenite. RNA-sequencing (RNA-Seq) was performed with poly(A) RNA isolated from cells harvested at 7, 19, and 28 wk with subsequent replicate multivariate analysis of transcript splicing (rMATS) analysis to detect and quantify differential alternative splicing events. Reverse transcriptase-polymerase chain reaction (RT-PCR) for selected alternative splicing events was performed to validate RNA-Seq predictions. Functional enrichment was performed by gene ontology (GO) analysis of the differential alternative splicing event data set at each time point. RESULTS: At least 600 differential alternative splicing events were detected at each time point tested, comprising all the five main types of alternative splicing and occurring in both open reading frames (ORFs) and untranslated regions (UTRs). Based on functional relevance ELK4, SHC1, and XRRA1 were selected for validation of predicted alternative splicing events at 7 wk by RT-PCR. Densitometric analysis of RT-PCR data corroborated the rMATS predicted alternative splicing for all three events. Protein expression validation of the selected alternative splicing events was challenging given that very few isoform-specific antibodies are available. GO analysis demonstrated that the enriched terms in differential alternatively spliced mRNAs changed dynamically with the time of exposure. Notably, RNA metabolism and splicing regulation pathways were enriched at the 7-wk time point, when the greatest number of differentially alternatively spliced mRNAs are detected. Our preliminary proteomic analysis demonstrated that the expression of the canonical isoforms of the splice regulators DDX42, RMB25, and SRRM2 were induced upon chronic arsenic exposure, corroborating the splicing predictions. DISCUSSION: These results using cultures of HaCaT cells suggest that arsenic exposure disrupted an alternative splice factor network and induced time-dependent genome-wide differential alternative splicing that likely contributed to the changing proteomic landscape in arsenic-induced carcinogenesis. However, significant challenges remain in corroborating alternative splicing data at the proteomic level. https://doi.org/10.1289/EHP9676.


Subject(s)
Arsenic , Alternative Splicing , Arsenic/metabolism , Arsenic/toxicity , HaCaT Cells , Humans , Keratinocytes/metabolism , Proteins/genetics , Proteins/metabolism , Proteomics
7.
Arch Toxicol ; 95(7): 2351-2365, 2021 07.
Article in English | MEDLINE | ID: mdl-34032870

ABSTRACT

Chronic arsenic exposure causes skin cancer, although the underlying molecular mechanisms are not well defined. Altered microRNA and mRNA expression likely play a pivotal role in carcinogenesis. Changes in genome-wide differential expression of miRNA and mRNA at 3 strategic time points upon chronic sodium arsenite (As3+) exposure were investigated in a well-validated HaCaT cell line model of arsenic-induced cutaneous squamous cell carcinoma (cSCC). Quadruplicate independent HaCaT cell cultures were exposed to 0 or 100 nM As3+ for up to 28-weeks (wk). Cell growth was monitored throughout the course of exposure and epithelial-mesenchymal transition (EMT) was examined employing immunoblot. Differentially expressed miRNA and mRNA profiles were generated at 7, 19, and 28-wk by RNA-seq, followed by identification of differentially expressed mRNA targets of differentially expressed miRNAs through expression pairing at each time point. Pathway analyses were performed for total differentially expressed mRNAs and for the miRNA targeted mRNAs at each time point. RNA-seq predictions were validated by immunoblot of selected target proteins. While the As3+-exposed cells grew slower initially, growth was equal to that of unexposed cells by 19-wk (transformation initiation), and exposed cells subsequently grew faster than passage-matched unexposed cells. As3+-exposed cells had undergone EMT at 28-wk. Pathway analyses demonstrate dysregulation of carcinogenesis-related pathways and networks in a complex coordinated manner at each time point. Immunoblot data largely corroborate RNA-seq predictions in the endoplasmic reticulum stress (ER stress) pathway. This study provides a detailed molecular picture of changes occurring during the arsenic-induced transformation of human keratinocytes.


Subject(s)
Arsenic , Carcinoma, Squamous Cell , MicroRNAs , Skin Neoplasms , Arsenic/toxicity , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Culture Techniques , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Skin Neoplasms/pathology
8.
Semin Cancer Biol ; 76: 120-131, 2021 11.
Article in English | MEDLINE | ID: mdl-33979676

ABSTRACT

Genomic instability consists of a range of genetic alterations within the genome that contributes to tumor heterogeneity and drug resistance. It is a well-established characteristic of most cancer cells. Genome instability induction results from defects in DNA damage surveillance mechanisms, mitotic checkpoints and DNA repair machinery. Accumulation of genetic alterations ultimately sets cells towards malignant transformation. Recent studies suggest that miRNAs are key players in mediating genome instability. miRNAs are a class of small RNAs expressed in most somatic tissues and are part of the epigenome. Importantly, in many cancers, miRNA expression is dysregulated. Consequently, this review examines the role of miRNA dysregulation as a causal step for induction of genome instability and subsequent carcinogenesis. We focus specifically on mechanistic studies assessing miRNA(s) and specific subtypes of genome instability or known modes of genome instability. In addition, we provide insight on the existing knowledge gaps within the field and possible ways to address them.


Subject(s)
Carcinogenesis/genetics , DNA Repair/genetics , Genomic Instability/genetics , MicroRNAs/genetics , Neoplasms/genetics , Animals , Humans
9.
Int J Exp Pathol ; 102(1): 57-69, 2021 02.
Article in English | MEDLINE | ID: mdl-33502821

ABSTRACT

Cryptorchidism is one of the main risk factors for infertility and testicular cancer. Orchiopexy surgery corrects cryptorchidism effects. Different models of cryptorchidism developed in the rat include surgery. We assessed testicular alterations in rats submitted to surgical cryptorchidism and examined their potential for reversibility at different time points in order to verify time dependency effect(s) on the recovery of the undescended testes. Cryptorchidism was induced in 3-week-old rats. Animals were euthanized 3, 6 or 11 weeks after surgery to evaluate the morphological progression of cryptorchidism-induced germinative epithelial alterations. Other groups underwent orchiopexy 3, 5 or 9 weeks after surgical cryptorchidism, before or after puberty. Animals were euthanized 3 or 8 weeks after orchiopexy. Controls underwent sham surgery at the same time points as the surgical groups. Cryptorchid testes showed decreased weight, germinative epithelial degeneration, apoptosis and vacuolation, corresponding to impairment of spermatogenesis and of Sertoli cells. Some tubules has a Sertoli cell-only pattern and atrophy. The intensity of damage was related to the duration of cryptorchidism. After orchiopexy, spermatogenesis completely recovered only when testicular relocation occurred before puberty and the interval for recovery was extended. These results indicate that age, sexual maturity and extension of germ cell damage were relevant for producing germ cell restoration and normal spermatogenesis. We provide original observations on the time dependency of testicular alterations induced by cryptorchidism and their restoration using morphologic, morphometric and immunohistochemical approaches. It may be useful to study germ cell impairment, progression and recovery in different experimental settings, including exposure to exogenous chemicals.


Subject(s)
Cryptorchidism/pathology , Cryptorchidism/surgery , Orchiopexy/methods , Testis/pathology , Animals , Male , Rats , Rats, Sprague-Dawley , Spermatogenesis/physiology , Time Factors
10.
Toxicol Appl Pharmacol ; 409: 115306, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33127375

ABSTRACT

miRNAs (miRNA) are essential players regulating gene expression affecting cellular processes contributing to disease development. Dysregulated miRNA expression has been observed in numerous diseases including hepatitis, cardiovascular diseases and cancers. In cardiovascular diseases, several miRNAs function as mediators of pathogenic stress-related signaling pathways that may lead to an excessive extracellular matrix production and collagen deposition causing cardiac stress resulting in fibrosis. In cancers, many miRNAs function as oncogenes or tumor suppressors facilitating tumor growth, invasion and angiogenesis. Furthermore, the association between distinct miRNA profile and tumor development, progression and treatment response has identified miRNAs as potential biomarkers for disease diagnosis and prognosis. Growing evidence demonstrates changes in miRNA expression levels in experimental settings or observational studies associated with environmental chemical exposures such as arsenic. Arsenic is one of the most well-known human carcinogens. Long-term exposure through drinking water increases risk of developing skin, lung and urinary bladder cancers, as well as cardiovascular disease. The mechanism(s) by which arsenic causes disease remains elusive. Proposed mechanisms include miRNA dysregulation. Epidemiological studies identified differential miRNA expression between arsenic-exposed and non-exposed individuals from India, Bangladesh, China and Mexico. In vivo and in vitro studies have shown that miRNAs are critically involved in arsenic-induced malignant transformation. Few studies analyzed miRNAs in other diseases associated with arsenic exposure. Importantly, there is no consensus on a consistent miRNA profile for arsenic-induced cancers because most studies analyze only particular miRNAs. Identifying miRNA expression changes common among humans, rodents and cell lines might guide future miRNA investigations.


Subject(s)
Arsenic/toxicity , MicroRNAs/metabolism , Neoplasms/metabolism , Animals , Carcinogenesis/drug effects , Gene Expression/drug effects , Humans
11.
Chem Res Toxicol ; 33(6): 1403-1417, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32274925

ABSTRACT

Exposure to arsenic, a class I carcinogen, affects 200 million people globally. Skin is the major target organ, but the molecular etiology of arsenic-induced skin carcinogenesis remains unclear. Arsenite (As3+)-induced disruption of alternative splicing could be involved, but the mechanism is unknown. Zinc finger proteins play key roles in alternative splicing. As3+ can displace zinc (Zn2+) from C3H1 and C4 zinc finger motifs (zfm's), affecting protein function. ZRANB2, an alternative splicing regulator with two C4 zfm's integral to its structure and splicing function, was chosen as a candidate for this study. We hypothesized that As3+ could displace Zn2+ from ZRANB2, altering its structure, expression, and splicing function. As3+/Zn2+ binding and mutual displacement experiments were performed with synthetic apo-peptides corresponding to each ZRANB2 zfm, employing a combination of intrinsic fluorescence, ultraviolet spectrophotometry, zinc colorimetric assay, and liquid chromatography-tandem mass spectrometry. ZRANB2 expression in HaCaT cells acutely exposed to As3+ (0 or 5 µM, 0-72 h; or 0-5 µM, 6 h) was examined by RT-qPCR and immunoblotting. ZRANB2-dependent splicing of TRA2B mRNA, a known ZRANB2 target, was monitored by reverse transcription-polymerase chain reaction. As3+ bound to, as well as displaced Zn2+ from, each zfm. Also, Zn2+ displaced As3+ from As3+-bound zfm's acutely, albeit transiently. As3+ exposure induced ZRANB2 protein expression between 3 and 24 h and at all exposures tested but not ZRANB2 mRNA expression. ZRANB2-directed TRA2B splicing was impaired between 3 and 24 h post-exposure. Furthermore, ZRANB2 splicing function was also compromised at all As3+ exposures, starting at 100 nm. We conclude that As3+ exposure displaces Zn2+ from ZRANB2 zfm's, changing its structure and compromising splicing of its targets, and increases ZRANB2 protein expression as a homeostatic response both at environmental/toxicological exposures and therapeutically relevant doses.


Subject(s)
Arsenites/toxicity , Environmental Pollutants/toxicity , RNA-Binding Proteins/metabolism , Zinc/metabolism , Alternative Splicing/drug effects , Cell Line , Cell Survival/drug effects , Humans , RNA-Binding Proteins/genetics
12.
Toxicol Appl Pharmacol ; 378: 114614, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31176655

ABSTRACT

The mechanism of arsenic-induced skin carcinogenesis is not yet fully understood. Chromosomal instability contributes to aneuploidy and is a driving force in carcinogenesis. Arsenic causes mitotic arrest and induces aneuploidy. hsa-miR-186 overexpression is associated with metastatic cancers as well as arsenic-induced squamous cell carcinoma and is reported to target several mitotic regulators. Decreased levels of these proteins can dysregulate chromatid segregation contributing to aneuploidy. This work investigates the potential aneuploidogenic role of hsa-miR-186 in arsenic carcinogenesis. Clones of immortalized human keratinocytes (HaCaT) stably transfected with a hsa-miR-186 expression or empty vector were isolated. Three clones with high and low hsa-miR-186 expression determined by RT-qPCR were selected for further analysis and cultured with 0 or 100 nM NaAsO2 for 8 weeks. Analysis of mitoses revealed that chromosome number and structural abnormalities increased in cells overexpressing hsa-miR-186 and were further increased by arsenite exposure. Double minutes were the dominant structural aberrations. The peak number of chromosomes also increased. Cells with >220 to >270 chromosomes appeared after 2 months in hsa-miR-186 overexpressing cells, indicating multiple rounds of endomitosis had occurred. The fraction of cells with increased chromosome number or structural abnormalities did not increase in passage matched control cells. Levels of selected target proteins were determined by western blot. Expression of BUB1, a predicted hsa-miR-186 target was suppressed in hsa-miR-186 overexpressing clones, but increased with arsenite exposure. CDC27 remained constant under all conditions. These results suggest that overexpression of miR-186 in arsenic exposed tissues likely induces aneuploidy contributing to arsenic-induced carcinogenesis.


Subject(s)
Arsenic/adverse effects , Arsenites/adverse effects , Chromosomal Instability/genetics , Keratinocytes/drug effects , MicroRNAs/genetics , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Line , Humans
13.
Toxicology ; 333: 100-106, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-25891526

ABSTRACT

Diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] is a substituted urea herbicide carcinogenic to the rat urinary bladder at high dietary levels. The suggested non-genotoxic mode of action (MOA) of diuron encompasses cytotoxicity and necrosis followed by regenerative hyperplasia. Prenecrotic swollen cells as observed under scanning electron microscopy (SEM) have been reported as early morphological alterations, putatively related to diuron cytotoxicity. However, these changes were not observed in a previous SEM study conducted in this laboratory. This study evaluated whether these early alterations are actually due to diuron cytotoxicity or artifacts related to different processing methods used for SEM analysis. Male Wistar rats were fed ad libitum with basal diet, 7.1% sodium saccharin (NaS) or 2.500ppm diuron for seven days or 15 weeks. The urinary bladders were processed for histological and labeling indices examinations and for SEM using two different processing methods. The incidence of simple hyperplasia after 15 weeks of exposure to diuron or to NaS was significantly increased. By SEM, the incidences and severity of lesions were significantly increased in the diuron group independently of exposure time. The different SEM processing methods used allowed for visualization of swollen superficial cells after seven days of diuron exposure. Probably the absence these cells in a previous study was due to the use very few animals. Our results support the hypothesis that the swollen cell is an early key event due to diuron-induced cytotoxicity and is the result of a degenerative process involved in the non-genotoxic carcinogenic mode of action of high doses of diuron.


Subject(s)
Diuron/toxicity , Microscopy, Electron, Scanning , Specimen Handling/methods , Urinary Bladder/drug effects , Urothelium/drug effects , Acetic Acid , Animals , Cell Enlargement/drug effects , Cell Proliferation/drug effects , Cell Size/drug effects , Formaldehyde , Glutaral , Hyperplasia , Male , Picrates , Rats, Wistar , Silanes , Time Factors , Tissue Fixation , Urinary Bladder/ultrastructure , Urothelium/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...