Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Res Int ; 172: 113100, 2023 10.
Article in English | MEDLINE | ID: mdl-37689864

ABSTRACT

Dairy proteins are commonly used to stabilize oil-in-water (O/W) emulsions, which can be replaced by other sustainable sources of proteins, such as insects. This study investigated the potential of lesser mealworm protein concentrate (LMPC) as a sustainable alternative to whey protein isolate (WPI) in stabilizing oil-in-water (O/W) emulsions using microfluidics. The frequency of coalescence (Fcoal) was calculated using images of emulsion droplets obtained near the inlet and outlet of the coalescence channel. The stability of O/W emulsions, produced using sunflower oil (SFO) or hexadecane and stabilized with varying concentrations of LMPC and WPI (0.02% to 0.0005% w/v), was compared under controlled conditions. The dispersed phase fraction (5.3%-14.3% v/v), protein adsorption time onto oil droplets (0.0398-0.158 s), and pH (pH = 3 and pH = 7) were also studied. Fcoal was greatest (0.42 s-1) when the protein concentration was lowest (0.0005%), the oil percentage was highest (14.3%), the adsorption period was shortest (0.0398 s), and the pH was 3. Droplet diameters did not vary significantly, with values between 55 and 118 µm, across protein concentrations or adsorption periods, but a rise in oil fraction resulted in a substantial increase in droplet diameters. Increases in protein content, adsorption duration, and oil percentage all resulted in increased stability (reduction of Fcoal). While LMPC and WPI showed similar results in microfluidic experiments and other test conditions, further research is needed to verify LMPC's efficacy as a replacement for WPI in food emulsification. Nonetheless, the findings suggest that LMPC has potential as a substitute for WPI in this application.


Subject(s)
Coleoptera , Tenebrio , Animals , Emulsions , Microfluidics , Coal , Water
2.
Membranes (Basel) ; 13(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36837640

ABSTRACT

Mealworm, TM (Tenebrio molitor), and black soldier fly, BSF (Hermetia illucens) are of special interest for food and feed applications due to their environmental benefits such as low water and land requirements, low greenhouse gas emissions, and high feed-conversion efficiency. This study assesses the use of ultrafiltration (UF) to fractionate protein concentrates from TM and BSF (TMPC, BSFPC) in order to enhance emulsifying and foaming properties. A 30 kDa regenerated cellulose acetate membrane enabled the separation of concentrate and permeate fractions for both insect proteins from two different initial feed concentrations (10 and 7.5 g/L). Permeate flux and protein transmission behave differently depending on the insect type and the initial concentration; while for TMPC permeate flux increases with a decrease in the initial protein concentration, it is not affected for BSFPC. The existing membrane cleaning protocols are suitable for recovering water flux after UF of insect proteins, enabling membrane re-use. Emulsifying activity is maintained for all the TMPC fractions, but it is significantly lower for the permeate fractions of BSFPC. Foaming properties are maintained for all the UF fractions of BSFPC and the ones from 7.5 g/L TMPC. Acidic solubilization leads to a fraction with enhanced emulsifying capacity and one with higher foaming capacity than the original for BSFPC. This study opens the door to membrane technology for insect protein fractionation, which has not been studied so far and has already provided useful solutions for other animal and plant proteins.

3.
Foods ; 10(12)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34945549

ABSTRACT

Water-in-oil-in-water (W1/O/W2) emulsions are complex delivery systems for polyphenols amongst other bio-actives. To stabilize the oil-water interphase, dairy proteins are commonly employed, which are ideally replaced by other, more sustainable sources, such as insect proteins. In this study, lesser mealworm (Alphitobius diaperinus) protein concentrate (LMPC) is assessed and compared to whey protein (WPI) and pea protein (PPI), to stabilize W1/O/W2 emulsions and encapsulate a commercial polyphenol. The results show that LMPC is able to stabilize W1/O/W2 emulsions comparably to whey protein and pea protein when using a low-energy membrane emulsification system. The final droplet size (d4,3) is 7.4 µm and encapsulation efficiency is between 72 and 74%, regardless of the protein used. Under acidic conditions, the LMPC shows a similar performance to whey protein and outperforms pea protein. Under alkaline conditions, the three proteins perform similarly, while the LMPC-stabilized emulsions are less able to withstand osmotic pressure differences. The LMPC stabilized emulsions are also more prone to droplet coalescence after a freeze-thaw cycle than the WPI-stabilized ones, but they are the most stable when exposed to the highest temperatures tested (90 °C). The results show LMPC's ability to stabilize multiple emulsions and encapsulate a polyphenol, which opens the door for application in foods.

4.
Foods ; 10(5)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064662

ABSTRACT

There is a pressing need to extend the knowledge on the properties of insect protein fractions to boost their use in the food industry. In this study several techno-functional properties of a black soldier fly (Hermetia illucens) protein concentrate (BSFPC) obtained by solubilization and precipitation at pH 4.0-4.3 were investigated and compared with whey protein isolate (WPI), a conventional dairy protein used to stabilize food emulsions. The extraction method applied resulted in a BSFPC with a protein content of 62.44% (Kp factor 5.36) that exhibited comparable or higher values of emulsifying activity and foamability than WPI for the same concentrations, hence, showing the potential for emulsion and foam stabilization. As for the emulsifying properties, the BSFPC (1% and 2%) showed the capacity to stabilize sunflower and lemon oil-in-water emulsions (20%, 30%, and 40% oil fraction) produced by dynamic membranes of tunable pore size (DMTS). It was proved that BSFPC stabilizes sunflower oil-in-water emulsions similarly to WPI, but with a slightly wider droplet size distribution. As for time stability of the sunflower oil emulsions at 25 °C, it was seen that droplet size distribution was maintained for 1% WPI and 2% BSFPC, while for 1% BSFPC there was a slight increase. For lemon oil emulsions, BSFPC showed better emulsifying performance than WPI, which required to be prepared with a pH 7 buffer for lemon oil fractions of 40%, to balance the decrease in the pH caused by the lemon oil water soluble components. The stability of the emulsions was improved when maintained under refrigeration (4 °C) for both BSFPC and WPI. The results of this work point out the feasibility of using BSFPC to stabilize O/W emulsions using a low energy system.

5.
J Food Sci ; 84(10): 2777-2784, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31524956

ABSTRACT

The aim of this work was to study the potential of using infrared spectroscopy and chemometrics to monitor Maillard reaction. Sodium caseinate (NaCAS) and gum Arabic (GA) or sodium carboxymethyl cellulose (CMC) powders were mixed at 1:1, spray-dried, and incubated at 60 °C and 76% of relative humidity from 0 to 72 hr. Sample infrared spectra were collected, and browning degree, conjugation efficiency, and stabilization properties of the conjugates were analyzed by spectrophotometry, fluorescence spectroscopy, turbidity, and zeta potential measurements. Pairwise soft independent modeling of class analogy (SIMCA) models showed significant chemical differences among NaCAS-GA mixtures incubated for 0 (Control) and 16 hr, attributed to functional groups linked to different Maillard reaction products such as Schiff's base and pyridine compounds. Infrared spectroscopy combined with SIMCA is a powerful tool to monitor the formation of protein-polysaccharide conjugates by Maillard reaction. PRACTICAL APPLICATION: Protein-polysaccharide conjugates obtained by Maillard reaction are currently used as novel food emulsifiers. However, conventional methods to study this chemical reaction are time consuming or involve the use of toxic and harmful reactants. Infrared spectroscopy combined with multivariate analysis is evaluated to be used as a rapid tool to monitor Maillard reaction.


Subject(s)
Gum Arabic/chemistry , Maillard Reaction , Spectrophotometry, Infrared/methods , Emulsifying Agents/chemistry , Fourier Analysis , Multivariate Analysis , Polysaccharides/chemistry , Proteins/chemistry
6.
Food Chem ; 272: 478-487, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30309571

ABSTRACT

The ability of electrostatic complexes made up of sodium caseinate (NaCAS) and a polysaccharide, carboxymethyl cellulose (CMC) or gum Arabic (GA), to retain polyphenols from grape seed extract when encapsulated in W1/O/W2 emulsions was compared to that of the single NaCAS (1%). Both electrostatic complexes (0.5% NaCAS - 0.375% CMC and 0.5% NaCAS - 0.5%GA at pH 5.6) used as hydrophilic emulsifiers in W1/O/W2 were able to stabilize the O/W2 interface for 14 days, even though their protein content was reduced by a 50% regarding that of the emulsions only stabilized with NaCAS. Moreover, interfacial adsorption did not show significant differences between NaCAS-polysaccharide electrostatic complexes and the single NaCAS. In terms of interfacial barrier properties, the rate of polyphenol release during storage was not affected by the type of hydrophilic emulsifier. Since polyphenol transport in W1/O/W2 emulsions was diffusion controlled, interfacial adsorption was considered the main factor limiting polyphenol retention.


Subject(s)
Biopolymers/chemistry , Emulsions/chemistry , Grape Seed Extract/chemistry , Vitis/chemistry , Emulsifying Agents/chemistry , Food Storage , Kinetics , Phenols/chemistry , Spectroscopy, Fourier Transform Infrared , Static Electricity , Vitis/metabolism
7.
Membranes (Basel) ; 7(2)2017 Mar 25.
Article in English | MEDLINE | ID: mdl-28346335

ABSTRACT

Proteins are mostly used to stabilize food emulsions; however, production of protein containing emulsions is notoriously difficult to capture in scaling relations due to the complex behavior of proteins in interfaces, in combination with the dynamic nature of the emulsification process. Here, we investigate premix membrane emulsification and use the Ohnesorge number to derive a scaling relation for emulsions prepared with whey protein, bovine serum albumin (BSA), and a standard emulsifier Tween 20, at various concentrations (0.1%, 0.5%, 1.25% and 2%). In the Ohnesorge number, viscous, inertia, and interfacial tension forces are captured, and most of the parameters can be measured with great accuracy, with the exception of the interfacial tension. We used microfluidic Y-junctions to estimate the apparent interfacial tension at throughputs comparable to those in premix emulsification, and found a unifying relation. We next used this relation to plot the Ohnesorge number versus P-ratio defined as the applied pressure over the Laplace pressure of the premix droplet. The measured values all showed a decreasing Ohnesorge number at increasing P-ratio; the differences between regular surfactants and proteins being systematic. The surfactants were more efficient in droplet size reduction, and it is expected that the differences were caused by the complex behavior of proteins in the interface (visco-elastic film formation). The differences between BSA and whey protein were relatively small, and their behavior coincided with that of low Tween concentration (0.1%), which deviated from the behavior at higher concentrations.

8.
J Microencapsul ; 33(2): 153-61, 2016.
Article in English | MEDLINE | ID: mdl-26878165

ABSTRACT

Alginate microparticles as flow seeding fulfil all the requirements that are recommended for the velocity measurements in Particle Image Velocimetry (PIV). These spherical microparticles offer the advantage of being environmentally friendly, having excellent seeding properties and they can be produced via a very simple process. In the present study, the performances of alginate microparticles functionalised with a fluorescent dye, Rhodamine B (RhB), for PIV have been studied. The efficacy of fluorescence is appreciated in a number of PIV applications since it can boost the signal-to-noise ratio. Alginate microparticles functionalised with RhB have high emission efficiency, desirable match with fluid density and controlled size. The study of the particles behaviour in strong acid and basic solutions and ammonia is also included. This type of particles can be used for measurements with PIV and Planar Laser Induced Fluorescence (PLIF) simultaneously, including acid-base reactions.


Subject(s)
Alginates/chemistry , Fluorescent Dyes/chemistry , Rheology/methods , Rhodamines/chemistry , Equipment Design , Fluorescence , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Particle Size , Rheology/instrumentation
9.
Food Chem ; 178: 251-8, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25704709

ABSTRACT

Spray drying of procyanidin-loaded W1/O/W2 emulsions produced by premix membrane emulsification (ME) enabled to produce microcapsules containing procyanidins. The interface of the emulsion droplets prior to spray drying was stabilized with several hydrophilic emulsifiers (whey protein (WPI), WPI-carboxylmethyl cellulose, WPI-gum Arabic, and WPI-chitosan). Their effect on procyanidin encapsulation efficiency, water activity, moisture and oil content, and microcapsule size distribution was investigated. Furthermore, the microstructure and droplet size distribution of redispersed microcapsules were analyzed. Although premix ME produced W1/O/W2 emulsions with a narrow droplet size distribution regardless the hydrophilic emulsifier (main peak of droplet size distribution around 9 µm), microcapsules after spray drying and double emulsions after redispersion showed profound differences in sizes depending on the interfacial composition. WPI-CMC stabilized microcapsules not only showed the highest procyanidin content (5.3 g kg(-1)) but also gave the narrowest particle size distribution with the lowest particle size for both microcapsules and the corresponding emulsions after rehydration (7.7 and 9.9 µm respectively).


Subject(s)
Biflavonoids/chemistry , Catechin/chemistry , Plant Extracts/chemistry , Proanthocyanidins/chemistry , Capsules/chemistry , Desiccation , Emulsifying Agents/chemistry , Emulsions/chemistry , Gum Arabic/chemistry , Hydrophobic and Hydrophilic Interactions , Milk Proteins/chemistry , Particle Size , Water/analysis , Whey Proteins
10.
J Agric Food Chem ; 55(13): 5147-55, 2007 Jun 27.
Article in English | MEDLINE | ID: mdl-17536831

ABSTRACT

Osmotic dehydration was assessed as an operation for supplementing a solid foodstuff (a gel was used as the model food) with grape phenolics from a concentrated red grape must to increase its antioxidant properties. The model food was processed for up to 24 h, and the osmotic pressure was adjusted by diluting the concentrated red grape must. In all conditions tested, low molecular weight phenolics (

Subject(s)
Antioxidants/analysis , Food, Fortified/analysis , Fruit/chemistry , Phenols/administration & dosage , Phenols/analysis , Vitis/chemistry , Flavonoids/administration & dosage , Flavonoids/analysis , Food Preservation , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL
...