Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 25(2): 496-513, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27914948

ABSTRACT

Triazolopyridine ethers with mGlu2 positive allosteric modulator (PAM) activity are disclosed. The synthesis, in vitro activity, and metabolic stability data for a series of analogs is provided. The effort resulted in the discovery of a potent, selective, and brain penetrant lead molecule BMT-133218 ((+)-7m). After oral administration at 10mg/kg, BMT-133218 demonstrated full reversal of PCP-stimulated locomotor activity and prevented MK-801-induced working memory deficits in separate mouse models. Also, reversal of impairments in executive function were observed in rat set-shifting studies at 3 and 10mg/kg (p.o.). Extensive plasma protein binding as the result of high lipophilicity likely limited activity at lower doses. Optimized triazolopyridine ethers offer utility as mGlu2 PAMs for the treatment of schizophrenia and merit further preclinical investigation.


Subject(s)
Ethers/pharmacology , Pyridines/pharmacology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Schizophrenia/drug therapy , Triazoles/pharmacology , Administration, Oral , Allosteric Regulation/drug effects , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Ethers/administration & dosage , Ethers/chemistry , Haplorhini , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Pyridines/administration & dosage , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/metabolism , Schizophrenia/metabolism , Structure-Activity Relationship , Triazoles/administration & dosage , Triazoles/chemistry
2.
J Med Chem ; 59(24): 11171-11181, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27958732

ABSTRACT

The design and synthesis of a series of quinuclidine-containing spirooxazolidines ("spiroimidates") and their utility as α7 nicotinic acetylcholine receptor partial agonists are described. Selected members of the series demonstrated excellent selectivity for α7 over the highly homologous 5-HT3A receptor. Modification of the N-spiroimidate heterocycle substituent led to (1S,2R,4S)-N-isoquinolin-3-yl)-4'H-4-azaspiro[bicyclo[2.2.2]octane-2,5'oxazol]-2'-amine (BMS-902483), a potent α7 partial agonist, which improved cognition in preclinical rodent models.


Subject(s)
Cyclooctanes/pharmacology , Drug Design , Nicotinic Agonists/pharmacology , Spiro Compounds/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Animals , Cyclooctanes/chemical synthesis , Cyclooctanes/chemistry , Dose-Response Relationship, Drug , Humans , Maze Learning/drug effects , Mice , Molecular Structure , Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
3.
J Pharmacol Exp Ther ; 356(2): 293-304, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26582730

ABSTRACT

The muscarinic acetylcholine receptor subtype 1 (M1) receptors play an important role in cognition and memory, and are considered to be attractive targets for the development of novel medications to treat cognitive impairments seen in schizophrenia and Alzheimer's disease. Indeed, the M1 agonist xanomeline has been shown to produce beneficial cognitive effects in both Alzheimer's disease and schizophrenia patients. Unfortunately, the therapeutic utility of xanomeline was limited by cholinergic side effects (sweating, salivation, gastrointestinal distress), which are believed to result from nonselective activation of other muscarinic receptor subtypes such as M2 and M3. Therefore, drug discovery efforts targeting the M1 receptor have focused on the discovery of compounds with improved selectivity profiles. Recently, allosteric M1 receptor ligands have been described, which exhibit excellent selectivity for M1 over other muscarinic receptor subtypes. In the current study, the following three compounds with mixed agonist/positive allosteric modulator activities that are highly functionally selective for the M1 receptor were tested in rats, dogs, and cynomologous monkeys: (3-((1S,2S)-2-hydrocyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one; 1-((4-cyano-4-(pyridin-2-yl)piperidin-1-yl)methyl)-4-oxo-4H-quinolizine-3-carboxylic acid; and (R)-ethyl 3-(2-methylbenzamido)-[1,4'-bipiperidine]-1'-carboxylate). Despite their selectivity for the M1 receptor, all three compounds elicited cholinergic side effects such as salivation, diarrhea, and emesis. These effects could not be explained by activity at other muscarinic receptor subtypes, or by activity at other receptors tested. Together, these results suggest that activation of M1 receptors alone is sufficient to produce unwanted cholinergic side effects such as those seen with xanomeline. This has important implications for the development of M1 receptor-targeted therapeutics since it suggests that dose-limiting cholinergic side effects still reside in M1 receptor selective activators.


Subject(s)
Muscarinic Agonists/metabolism , Muscarinic Agonists/pharmacology , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Dose-Response Relationship, Drug , Humans , Macaca fascicularis , Male , Mice , Rats , Rats, Sprague-Dawley
4.
J Pharmacol Exp Ther ; 354(3): 340-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26109678

ABSTRACT

The present studies represent the first published report of a dopamine D1 positive allosteric modulator (PAM). D1 receptors have been proposed as a therapeutic target for the treatment of cognitive deficits associated with schizophrenia. However, the clinical utility of orthosteric agonist compounds is limited by cardiovascular side effects, poor pharmacokinetics, lack of D1 selectivity, and an inverted dose response. A number of these challenges may be overcome by utilization of a selective D1 PAM. The current studies describe two chemically distinct D1 PAMs: Compound A [1-((rel-1S,3R,6R)-6-(benzo[d][1,3]dioxol-5-yl)bicyclo[4.1.0]heptan-3-yl)-4-(2-bromo-5-chlorobenzyl)piperazine] and Compound B [rel-(9R,10R,12S)-N-(2,6-dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxamide]. Compound A shows pure PAM activity, with an EC50 of 230 nM and agonist activity at the D2 receptor in D2-expressing human embryonic kidney cells. Compound B shows superior potency (EC50 of 43 nM) and selectivity for D1 versus D2 dopamine receptors. Unlike Compound A, Compound B is selective for human and nonhuman primate D1 receptors, but lacks activity at the rodent (rat and mouse) D1 receptors. Using molecular biology techniques, a single amino acid was identified at position 130, which mediates the species selectivity of Compound B. These data represent the first described D1-selective PAMs and define critical amino acids that regulate species selectivity.


Subject(s)
Allosteric Regulation/drug effects , Receptors, Dopamine D1/agonists , Receptors, Dopamine D2/agonists , Animals , CHO Cells , Cell Line , Cells, Cultured , Cricetulus , HEK293 Cells , Humans , Mice , Rats , Schizophrenia/drug therapy
7.
Bioorg Med Chem Lett ; 23(6): 1684-8, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23414838

ABSTRACT

High throughput screening led to the identification of a novel series of quinolone α7 nicotinic acetylcholine receptor (nAChR) agonists. Optimization of an HTS hit (1) led to 4-phenyl-1-(quinuclidin-3-ylmethyl)quinolin-2(1H)-one, which was found to be potent and selective. Poor brain penetrance in this series was attributed to transporter-mediated efflux, which was in turn due to high pKa. A novel 4-fluoroquinuclidine significantly lowered the pKa of the quinuclidine moiety, reducing efflux as measured by a Caco-2 assay.


Subject(s)
Nicotinic Agonists/chemistry , Quinolones/chemistry , Receptors, Nicotinic/chemistry , Animals , Caco-2 Cells , Drug Evaluation, Preclinical , Humans , Kinetics , Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/metabolism , Quinolones/chemical synthesis , Quinolones/metabolism , Rats , Receptors, Nicotinic/metabolism , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
8.
J Lab Autom ; 17(2): 104-15, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22357567

ABSTRACT

Prosecution of positive allosteric modulator (PAM) targets demands a specialized assay toolset. Many GPCR or ion channel targets are adaptable to functional assays whereby PAM efficacy can be inferred from left or rightward shifts in the concentration-response curves of orthosteric agonist. The inherent emphasis on throughput and occasional paucity of radioligands for a diverse array of allosteric modulator targets yields a need for an enhanced throughput agonist potency shift assay. Here, we describe a process by which such an assay was automated with robust, reproducible in vitro pharmacology. In direct comparison with a manual CRC shift assay, the enhanced throughput automated platform described here delivered near identical rank orders (r(2) = 0.75) at ~4-fold throughput/assay iteration. Correspondingly, average cycle time/plate decreased from 104 to 72 minutes. We also observed reductions in assay interference associated with compounds exhibiting ago-allosterism, which we attribute to preread compound incubation periods which are more precisely time-constrained under automation control. By leveraging automated laboratory technology, we have achieved meaningful throughput with no sacrifice of precision. Rather than to be target-class specific, the present process was specifically designed to serve as a platform template for a variety of cell-based functional allosteric modulation assays.


Subject(s)
Automation, Laboratory/methods , Cytological Techniques/methods , Drug Evaluation, Preclinical/methods , Ion Channels/agonists , Technology, Pharmaceutical/methods , High-Throughput Screening Assays/methods , Humans
9.
Assay Drug Dev Technol ; 10(2): 202-11, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22085018

ABSTRACT

Low-volume dispensing of neat dimethyl sulfoxide (DMSO) into plate-based assays conserves compound, assay reagents, and intermediate dilution plate cost and, as we demonstrate here, significantly improves structure-activity relationship resolution. Acoustic dispensing of DMSO solutions into standard volume 384W plates yielded inconsistent results in studies with 2 cell lines because of apparent effects on the integrity of the cell monolayer (increased intracellular Ca⁺⁺ levels as indicated by elevated basal dye fluorescence after acoustic transfer). PocketTip-mediated transfer was successful at increasing apparent potency on a more consistent basis. Notably, the correlation coefficient among fluorescence imaging plate reader (FLIPR):electrophysiology (EP) across a representative ~125 compound collection was increased ~5× via conversion to a PocketTip direct dispensation, indicating a triage assay more predictive of activity in the decisional patch-clamp assay. Very importantly, the EP-benchmarked false-negative rate as measured by compounds with FLIPR EC50 more than the highest concentration tested fell from >11% to 5% assay-wide, and the relative FLIPR:EP rank-order fidelity increased from 55% to 78%. Elimination of the aqueous intermediate step provided additional benefits, including reduced assay cost, decreased cycle time, and reduced wet compound consumption rate. Direct DMSO dispensing has broad applicability to cell-based functional assays of multiple varieties, especially in cases where limit solubility in assay buffer is a recognized impediment to maximizing interassay connectivity.


Subject(s)
High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , Ion Channels/drug effects , Acoustics , Buffers , Calcium/analysis , Calcium/chemistry , Centrifugation , Dimethyl Sulfoxide/chemistry , False Negative Reactions , Fluorometry , HEK293 Cells , Humans , Image Processing, Computer-Assisted , Indicator Dilution Techniques , Patch-Clamp Techniques , Solubility , Solutions , Water
10.
J Biomol Screen ; 14(5): 476-84, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19483144

ABSTRACT

Preserving the integrity of the compound collection and providing high-quality materials for drug discovery in an efficient and cost-effective manner are 2 major challenges faced by compound management (CM) at Bristol-Myers Squibb (BMS). The demands on CM include delivering hundreds of thousands of compounds a year to a variety of operations. These operations range from single-compound requests to hit identification support and just-in-time assay plate provision for lead optimization. Support needs for these processes consist of the ability to rapidly provide compounds as solids or solutions in a variety of formats, establishing proper long- and short-term storage conditions and creating appropriate methods for handling concentrated, potent compounds for delivery to sensitive biological assays. A series of experiments evaluating the effects of processing compounds with volatile solvents, storage conditions that can induce freeze/thaw cycles, and the delivery of compounds were performed. This article presents the results of these experiments and how they affect compound integrity and the accuracy of compound management processes.


Subject(s)
Biological Assay , Drug Discovery , Drug Stability , Biological Assay/instrumentation , Biological Assay/methods , Biological Assay/standards , Drug Discovery/instrumentation , Drug Discovery/methods , Pharmaceutical Preparations/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...