Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 17(1): 232, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31331347

ABSTRACT

BACKGROUND: Macrophage cholesterol efflux capacity has been identified as a predictor for cardiovascular disease. We assessed the relationship between adipocyte-derived extracellular vesicle microRNAs and macrophage cholesterol efflux capacity. METHODS: We assessed an adolescent cohort (n = 93, Age, median (IQR) = 17 (3) year, Female = 71, Male = 22) throughout the BMI continuum (BMI = 45.2 (13.2) kg/m2) for: (1) cholesterol efflux capacity and lipoprotein profiles; (2) adipocyte-derived extracellular vesicle microRNAs in serum; (3) the role of visceral adipose tissue extracellular vesicle in regulation of cholesterol efflux and cholesterol efflux gene expression in THP-1 macrophages in vitro. RESULTS: Efflux capacity was significantly associated with HDL (r = 0.30, p = 0.01) and LDL (r = 0.33, p = 0.005) particle size. Multivariate-analysis identified six microRNAs associated (p < 0.05) with cholesterol efflux capacity: miR-3129-5p (Beta = 0.695), miR-20b (0.430), miR9-5p (0.111), miR-320d (- 0.190), miR301a-5p (0.042), miR-155-5p (0.004). In response to increasing concentrations (1 µg/mL vs. 3 µg/mL) of VAT extracellular vesicle, cholesterol efflux (66% ± 10% vs. 49% ± 2%; p < 0.01) and expression of ABCA1 (FC = 1.9 ± 0.8 vs 0.5 ± 0.2; p < 0.001), CD36 (0.7 ± 0.4 vs. 2.1 ± 0.8, p = 0.02), CYP27A1 (1.4 ± 0.4 vs. 0.9 ± 0.5; p < 0.05), and LXRA (1.8 ± 1.1 vs. 0.5 ± 0.2; p < 0.05) was altered in THP-1 cells in vitro. CONCLUSION: Adipocyte-derived extracellular vesicle microRNAs may, in part, be involved macrophage cholesterol efflux regulation.


Subject(s)
Adipose Tissue/metabolism , Cholesterol/metabolism , Extracellular Vesicles/genetics , MicroRNAs/metabolism , Pediatric Obesity/genetics , Adolescent , Biological Transport , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Female , Humans , Lipoproteins/blood , Macrophages/metabolism , Male , MicroRNAs/genetics , Pediatric Obesity/blood , THP-1 Cells
2.
Obesity (Silver Spring) ; 25(1): 102-110, 2017 01.
Article in English | MEDLINE | ID: mdl-27883272

ABSTRACT

OBJECTIVE: Exosomes from obese adipose contain dysregulated microRNAs linked to insulin signaling, as compared with lean controls, providing a direct connection between adiposity and insulin resistance. This study tested the hypotheses that gastric bypass surgery and its subsequent weight loss would normalize adipocyte-derived exosomal microRNAs associated with insulin signaling and the associated metabolome related to glucose homeostasis. METHODS: African American female subjects with obesity (N = 6; age: 38.5 ± 6.8 years; BMI: 51.2 ± 8.8 kg/m2 ) were tested before and 1 year after surgery. Insulin resistance (HOMA), serum metabolomics, and global microRNA profiles of circulating adipocyte-derived exosomes were evaluated via ANCOVA and correlational analyses. RESULTS: One year postsurgery, patients showed decreased BMI (-18.6 ± 5.1 kg/m2 ; P < 0.001), ameliorated insulin resistance (HOMA: 1.94 ± 0.6 presurgery, 0.49 ± 0.1 postsurgery; P < 0.001), and altered metabolites including branched chain amino acids (BCAA). Biological pathway analysis of predicted mRNA targets of 168 surgery-responsive microRNAs (P < 0.05) identified the insulin signaling pathway (P = 1.27E-10; 52/138 elements), among others, in the data set. The insulin signaling pathway was also a target of 10 microRNAs correlated to changes in HOMA (P < 0.05; r > 0.4), and 48 microRNAs correlated to changes in BCAA levels. CONCLUSIONS: These data indicate that circulating adipocyte-derived exosomes are modified following gastric bypass surgery and correlate to improved postsurgery insulin resistance.


Subject(s)
Black or African American , Gastric Bypass , Gene Expression Regulation/physiology , MicroRNAs/analysis , Obesity/metabolism , Adipocytes/metabolism , Adult , Amino Acids, Branched-Chain/metabolism , Female , Humans , Insulin/metabolism , Insulin Resistance , Male , Middle Aged
3.
Am J Respir Cell Mol Biol ; 56(3): 291-299, 2017 03.
Article in English | MEDLINE | ID: mdl-27788019

ABSTRACT

Limited in vivo models exist to investigate the lung airway epithelial role in repair, regeneration, and pathology of chronic lung diseases. Herein, we introduce a novel animal model in asthma-a xenograft system integrating a differentiating human asthmatic airway epithelium with an actively remodeling rodent mesenchyme in an immunocompromised murine host. Human asthmatic and nonasthmatic airway epithelial cells were seeded into decellularized rat tracheas. Tracheas were ligated to a sterile cassette and implanted subcutaneously in the flanks of nude mice. Grafts were harvested at 2, 4, or 6 weeks for tissue histology, fibrillar collagen, and transforming growth factor-ß activation analysis. We compared immunostaining in these xenografts to human lungs. Grafted epithelial cells generated a differentiated epithelium containing basal, ciliated, and mucus-expressing cells. By 4 weeks postengraftment, asthmatic epithelia showed decreased numbers of ciliated cells and decreased E-cadherin expression compared with nonasthmatic grafts, similar to human lungs. Grafts seeded with asthmatic epithelial cells had three times more fibrillar collagen and induction of transforming growth factor-ß isoforms at 6 weeks postengraftment compared with nonasthmatic grafts. Asthmatic epithelium alone is sufficient to drive aberrant mesenchymal remodeling with fibrillar collagen deposition in asthmatic xenografts. Moreover, this xenograft system represents an advance over current asthma models in that it permits direct assessment of the epithelial-mesenchymal trophic unit.


Subject(s)
Asthma/pathology , Heterografts/pathology , Lung/pathology , Pulmonary Fibrosis/pathology , Adult , Airway Remodeling , Animals , Asthma/physiopathology , Demography , Disease Models, Animal , Epidermal Growth Factor/metabolism , Extracellular Matrix/metabolism , Female , Heterografts/physiopathology , Humans , Male , Middle Aged , Rats, Inbred F344 , Signal Transduction , Tissue Donors , Transforming Growth Factor beta1/metabolism , Young Adult
4.
PLoS One ; 11(9): e0162244, 2016.
Article in English | MEDLINE | ID: mdl-27643599

ABSTRACT

BACKGROUND: Innate immune responses are fine-tuned by small noncoding RNA molecules termed microRNAs (miRs) that modify gene expression in response to the environment. During acute infections, miRs can be secreted in extracellular vesicles (EV) to facilitate cell-to-cell genetic communication. The purpose of this study was to characterize the baseline population of miRs secreted in EVs in the airways of young children (airway secretory microRNAome) and examine the changes during rhinovirus (RV) infection, the most common cause of asthma exacerbations and the most important early risk factor for the development of asthma beyond childhood. METHODS: Nasal airway secretions were obtained from children (≤3 yrs. old) during PCR-confirmed RV infections (n = 10) and age-matched controls (n = 10). Nasal EVs were isolated with polymer-based precipitation and global miR profiles generated using NanoString microarrays. We validated our in vivo airway secretory miR data in an in vitro airway epithelium model using apical secretions from primary human bronchial epithelial cells (HBEC) differentiated at air-liquid interface (ALI). Bioinformatics tools were used to determine the unified (nasal and bronchial) signature airway secretory miRNAome and changes during RV infection in children. RESULTS: Multiscale analysis identified four signature miRs comprising the baseline airway secretory miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612. We identified hsa-miR-155 as the main change in the baseline miRNAome during RV infection in young children. We investigated the potential biological relevance of the airway secretion of hsa-mir-155 using in silico models derived from gene datasets of experimental in vivo human RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented pathway in the upper airways of individuals infected with RV. CONCLUSIONS: Comparative analysis of the airway secretory microRNAome in children indicates that RV infection is associated with airway secretion of EVs containing miR-155, which is predicted in silico to regulate antiviral immunity. Further characterization of the airway secretory microRNAome during health and disease may lead to completely new strategies to treat and monitor respiratory conditions in all ages.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Picornaviridae Infections/genetics , Respiratory Tract Infections/genetics , Rhinovirus/physiology , Child, Preschool , Genomics , Humans , Infant , Up-Regulation
5.
Pediatr Res ; 77(3): 447-54, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25518011

ABSTRACT

BACKGROUND: Obesity is frequently complicated by comorbid conditions, yet how excess adipose contributes is poorly understood. Although adipocytes in obese individuals induce systemic inflammation via secreted cytokines, another potential mediator has recently been identified (i.e., adipocyte-derived exosomes). We hypothesized that adipocyte-derived exosomes contain mediators capable of activating end-organ inflammatory and fibrotic signaling pathways. METHODS: We developed techniques to quantify and characterize exosomes shed by adipocytes from seven obese (age: 12-17.5 y, BMI: 33-50 kg/m(2)) and five lean (age: 11-19 y, BMI: 22-25 kg/m(2)) subjects. RESULTS: Abundant exosomal miRNAs, but no mRNAs, were detected. Comparison of obese vs. lean visceral adipose donors detected 55 differentially expressed miRNAs (P < 0.05; fold change ≥|1.2|). qRT-PCR confirmed downregulation of miR-148b (ratio = 0.2 (95% confidence interval = 0.1, 0.6)) and miR-4269 (0.3 (0.1, 0.8)), and upregulation of miR-23b (6.2 (2.2, 17.8)) and miR-4429 (3.8 (1.1-13.4)). Pathways analysis identified TGF-ß signaling and Wnt/ß-catenin signaling among the top canonical pathways expected to be altered with visceral adiposity based on projected mRNA targets for the 55 differentially expressed miRNAs. A select mRNA target was validated in vitro. CONCLUSION: These data show that visceral adipocytes shed exosomal-mediators predicted to regulate key end-organ inflammatory and fibrotic signaling pathways.


Subject(s)
Adipocytes/metabolism , Exosomes/chemistry , Gene Expression Regulation/physiology , Inflammation/etiology , MicroRNAs/analysis , Obesity/complications , Signal Transduction/physiology , Adolescent , Cell Line , Humans , Immunohistochemistry , Macrophages/physiology , MicroRNAs/adverse effects , Obesity/physiopathology
6.
J Surg Res ; 192(2): 268-75, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25086727

ABSTRACT

BACKGROUND: The pathogenesis of nonalcoholic fatty liver disease (NAFLD) has been attributed to increased systemic inflammation and insulin resistance mediated by visceral adipose tissue (VAT), although the exact mechanisms are undefined. Exosomes are membrane-derived vesicles containing messenger RNA, microRNA, and proteins, which have been implicated in cancer, neurodegenerative, and autoimmune diseases, which we postulated may be involved in obesity-related diseases. We isolated exosomes from VAT, characterized their content, and identified their potential targets. Targets included the transforming growth factor beta (TGF-ß) pathway, which has been linked to NAFLD. We hypothesized that adipocyte exosomes would integrate into HepG2 and hepatic stellate cell lines and cause dysregulation of the TGF-ß pathway. METHODS: Exosomes from VAT from obese and lean patients were isolated and fluorescently labeled, then applied to cultured hepatic cell lines. After incubation, culture slides were imaged to detect exosome uptake. In separate experiments, exosomes were applied to cultured cells and incubated 48-h. Gene expression of TGF-ß pathway mediators was analyzed by polymerase chain reaction, and compared with cells, which were not exposed to exosomes. RESULTS: Fluorescent-labeled exosomes integrated into both cell types and deposited in a perinuclear distribution. Exosome exposure caused increased tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and integrin ανß-5 expression and decreased matrix metalloproteinase-7 and plasminogen activator inhibitor-1 expression in to HepG2 cells and increased expression of TIMP-1, TIMP-4, Smad-3, integrins ανß-5 and ανß-8, and matrix metalloproteinase-9 in hepatic stellate cells. CONCLUSIONS: Exosomes from VAT integrate into liver cells and induce dysregulation of TGF-ß pathway members in vitro and offers an intriguing possibility for the pathogenesis of NAFLD.


Subject(s)
Adipocytes/metabolism , Exosomes/metabolism , Hepatocytes/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Transforming Growth Factor beta1/metabolism , Adipocytes/pathology , Adolescent , Female , Hep G2 Cells , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocytes/pathology , Humans , Integrins/metabolism , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Matrix Metalloproteinase 7/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/pathology , Plasminogen Activator Inhibitor 1/metabolism , Receptors, Vitronectin/metabolism , Signal Transduction/physiology , Smad3 Protein/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism , Tissue Inhibitor of Metalloproteinase-4
7.
PLoS One ; 7(11): e48757, 2012.
Article in English | MEDLINE | ID: mdl-23144957

ABSTRACT

Hippocampal function varies along its septotemporal axis, with the septal (dorsal) pole more frequently involved in spatial learning and memory and the temporal (ventral) pole playing a greater role in emotional behaviors. One feature that varies across these subregions is adult neurogenesis. New neurons are more numerous in the septal hippocampus but are more active in the temporal hippocampus during water maze training. However, many other aspects of adult neurogenesis remain unexplored in the context of septal versus temporal subregions. In addition, the dentate gyrus contains another functionally important anatomical division along the transverse axis, with the suprapyramidal blade showing greater experience-related activity than the infrapyramidal blade. Here we ask whether new neurons differ in their rates of survival and maturation along the septotemporal and transverse axes. We found that neurogenesis is initially higher in the infrapyramidal than suprapyramidal blade, but these cells are less likely to survive, resulting in similar densities of neurons in the two blades by four weeks. Across the septotemporal axis, neurogenesis was higher in septal than temporal pole, while the survival rate of new neurons did not differ. Maturation was assessed by immunostaining for the neuronal marker, NeuN, which increases in expression level with maturation, and for the immediate-early gene, Arc, which suggests a neuron is capable of undergoing activity-dependent synaptic plasticity. Maturation occurred approximately 1-2 weeks earlier in the septal pole than in the temporal pole. This suggests that septal neurons may contribute to function sooner; however, the prolonged maturation of new temporal neurons may endow them with a longer window of plasticity during which their functions could be distinct from those of the mature granule cell population. These data point to subregional differences in new neuron maturation and suggest that changes in neurogenesis could alter different hippocampus-dependent behaviors with different time courses.


Subject(s)
Dentate Gyrus/cytology , Neurons/cytology , Animals , Antigens, Nuclear/metabolism , Cell Survival , Cytoskeletal Proteins/metabolism , Dentate Gyrus/growth & development , Dentate Gyrus/metabolism , Male , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...