Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Mater Chem B ; 12(19): 4584-4612, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38686396

ABSTRACT

The application of three- and four-dimensional (3D/4D) printing in cancer research represents a significant advancement in understanding and addressing the complexities of cancer biology. 3D/4D materials provide more physiologically relevant environments compared to traditional two-dimensional models, allowing for a more accurate representation of the tumor microenvironment that enables researchers to study tumor progression, drug responses, and interactions with surrounding tissues under conditions similar to in vivo conditions. The dynamic nature of 4D materials introduces the element of time, allowing for the observation of temporal changes in cancer behavior and response to therapeutic interventions. The use of 3D/4D printing in cancer research holds great promise for advancing our understanding of the disease and improving the translation of preclinical findings to clinical applications. Accordingly, this review aims to briefly discuss 3D and 4D printing and their advantages and limitations in the field of cancer. Moreover, new techniques such as 5D/6D printing and artificial intelligence (AI) are also introduced as methods that could be used to overcome the limitations of 3D/4D printing and opened promising ways for the fast and precise diagnosis and treatment of cancer.


Subject(s)
Bioprinting , Neoplasms , Printing, Three-Dimensional , Humans , Neoplasms/pathology , Animals , Tumor Microenvironment
2.
Biomater Adv ; 146: 213299, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36706607

ABSTRACT

Antimicrobial peptides (AMPs) are considered promising candidates to treat various infections in soft tissues and skin. However, no effective treatment based on AMPs has been reached to clinics due to their instability in serum and wounds. Biosurfactants such as acidic sophorolipids (ASLs) of very high concentrations (equal or above 5 mg/mL) have been demonstrated to be antimicrobial agents, however these concentrations might induce cytotoxic effects to human cells. Here, we have demonstrated the synergistic antimicrobial effect of ASL nanoparticles (NPs) and LL37 peptides (below their minimum inhibitory concentrations; MICs) to eradicate Gram-positive and Gram-negative bacteria in human serum (HS) and in the presence of trypsin. The formulations containing ASL NPs (500 µg/mL) and LL37 peptides (15-25 µg/mL) effectively kill wide strains of bacteria in 5 % HS and the presence of trypsin. Moreover, the combination of ASL NPs (500 µg/mL) and LL37 peptides (15 µg/mL) prevents the formation of S. aureus biofilm and eradicates the one-day old biofilm. Importantly, the combination of ASL NPs and LL37 peptides severely damages the cell membrane of Escherichia coli (E. coli) as shown by atomic force microscopy (AFM). The combination of ASL NPs and LL37 peptides rapidly damages the outer (OM) and inner membrane (IM) of E. coli, while ASL NPs (1000 µg/mL) alone slowly compromise the integrity of the bacterial membrane. Importantly, the combination of ASL NPs and LL37 peptides is biocompatible to human keratinocyte cells (HaCaTs) and human umbilical vein endothelial cells (HUVECs), and induces the expression of anti-inflammatory cytokine in macrophages. Overall, ASL NPs in combination with LL37 peptides might be developed as an effective topical formulation to prevent bacterial infections in the skin.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Humans , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides , Escherichia coli , Staphylococcus aureus , Trypsin/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Anti-Infective Agents/pharmacology , Bacteria , Human Umbilical Vein Endothelial Cells , Biofilms
3.
ACS Appl Mater Interfaces ; 14(21): 24213-24228, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35584375

ABSTRACT

No effective therapeutic dressings are currently available in the market that can prevent bacterial infection and simultaneously promote skin regeneration in diabetic patients. The lack of re-epithelization, prevalence of inflammation, and high risk of infection are hallmarks of non-healing wounds. Here, we have evaluated the antimicrobial and pro-regenerative effect of a relatively non-leaching LL37 peptide immobilized in polyurethane (PU)-based wound dressings (PU-adhesive-LL37 dressing). The PU-adhesive-LL37 (63 µg LL37NPs/cm2) dressing killed Gram-positive and Gram-negative bacteria in human serum without inducing bacterial resistance after 16 antimicrobial test cycles in contrast to commercially available dressings with the capacity to release antimicrobial Ag ions. Importantly, type II diabetic mice (db/db mice) treated with the PU-adhesive-LL37 dressing for different periods of time (6 or 14 days) showed enhanced wound healing and re-epithelialization (i.e., high keratin 14/5 levels) and lower macrophage infiltration in the wounds compared to animals treated with PU. The wounds treated with PU-adhesive-LL37 dressings showed also low expression of pro-inflammatory cytokines such as TNF-α and IL6 after 6 days of treatment, indicating that they act as an anti-inflammatory dressing. Additionally, PU-adhesive-LL37 dressings do not induce acute inflammatory responses in the peripheral blood mononuclear cells (PBMCs) after 3 days of exposure, in contrast to controls. Taken together, PU-adhesive-LL37NP dressings might prevent the bacterial infections and facilitate wound healing by tissue contact, inducing re-epithelialization and anti-inflammatory processes in diabetic conditions.


Subject(s)
Bacterial Infections , Diabetes Mellitus, Experimental , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides , Bandages , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Leukocytes, Mononuclear , Mice , Polyurethanes/pharmacology , Wound Healing
4.
J Mater Chem B ; 10(14): 2384-2429, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35244122

ABSTRACT

The multifunctional properties of antimicrobial peptides (AMPs) make them attractive candidates for the treatment of various diseases. AMPs are considered as alternatives to antibiotics due to the increasing number of multidrug-resistant (MDR) bacteria. However, bare AMPs have limited therapeutic potentials due to a low residence time in the blood circulatory system and susceptibility to proteases and an alkaline wound environment. These limitations are the major hurdles for AMPs to succeed as commercial drugs. In contrast, AMP-based materials, for instance, NPs, hydrogels, electrospun fibres, dressings and implants, could overcome these challenges and provide therapeutic efficacies to the conjugated AMPs superior to those of bare AMPs in different disease models. In this review, we discuss the preparation of different compositions of AMP-based materials and their therapeutic potential for the treatment of microbial infections in the brain, eyes, mouth, skin, lungs, and gastrointestinal and urinary tracts. Apart from antimicrobial potential, the applications of AMP-based materials in the regeneration of skin/bone, prevention of implant-associated infections, detection/imaging of bacteria, cancer therapy and gene delivery are discussed in this review. Lastly, we discuss different challenges that hinder the commercialization of AMP-based materials. Overall, this review provides a comprehensive account of the current progress and prospects of AMP-based materials for clinical applications.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bacteria , Drug Resistance, Multiple, Bacterial
5.
Food Chem Toxicol ; 149: 111967, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33417974

ABSTRACT

Since most models used to study neuronal dysfunction display disadvantages and ethical concerns, a fast and reproducible in vitro model to study mitochondria-related neurodegeneration is required. Here, we optimized and characterized a 3-day retinoic acid-based protocol to differentiate the SH-SY5Y cell line into a neuronal-like phenotype and investigated alterations in mitochondrial physiology and distribution. Differentiation was associated with p21-linked cell cycle arrest and an increase in cell mass and area, possibly associated with the development of neurite-like extensions. Notably, increased expression of mature neuronal markers (neuronal-specific nuclear protein, microtubule-associated protein 2, ßIII tubulin and enolase 2) was observed in differentiated cells. Moreover, increased mitochondrial content and maximal area per cell suggests mitochondrial remodeling. To demonstrate that this model is appropriate to study mitochondrial dysfunction, cells were treated for 6 h with mitochondrial toxicants (rotenone, antimycin A, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) and 6-hydroxydopamine (6-OHDA)). Differentiated cells were more susceptible to increasing concentrations of FCCP, antimycin A, and rotenone, while 6-OHDA showed a distinct dose-dependent neurotoxicity pattern. Even though differentiated cells did not exhibit a fully mature/differentiated neuronal phenotype, the protocol developed can be used to study neurotoxicity processes, mitochondrial dynamics, and bioenergetic impairment, representing an alternative to study mitochondrial impairment-related pathologies in vitro.


Subject(s)
Cell Differentiation , Neuroblastoma , Neurotoxicity Syndromes/pathology , Tretinoin/toxicity , Cell Line, Tumor , Colorimetry , Humans , Microscopy/methods , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Neurons/physiology , Rhodamines
SELECTION OF CITATIONS
SEARCH DETAIL
...