Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Ultrasonics ; 109: 106258, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33011614

ABSTRACT

The computation of the electromechanical coupling coefficient (EMCC) of a fully assembled medical ultrasound transducer array is directly computed with closed form expressions. The Levenberg-Marquardt non-linear regression algorithm (LMA) is employed to help confirm the EMCC calculated prediction (kEFF) and provide statistical insights. The complex electrical impedance spectra of a 1-3 composite array with two matching layers operating at a 3.75 MHz center frequency using PIN-PMN-PT single crystal material is measured in air both before and after oven heating at 160 °C for 15 min. The oven heating produces changes in the EMCC of -4.9%, clamped dielectric constant of -11%, and effective transducer longitudinal velocity of -2.5%. Utilizing the pre- and post-heating array impedance data, the calculated EMCC values from the new closed form expressions agree well with the complete KLM model based LMA, and also exhibit approximately one tenth the error as compared to the formulas for a flat, unloaded transducer.

2.
Biomaterials ; 206: 73-86, 2019 06.
Article in English | MEDLINE | ID: mdl-30953907

ABSTRACT

Catheter-based intra-arterial drug therapies have proven effective for a range of oncologic, neurologic, and cardiovascular applications. However, these procedures are limited by their invasiveness and relatively broad drug spatial distribution. The ideal technique for local pharmacotherapy would be noninvasive and would flexibly deliver a given drug to any region of the body with high spatial and temporal precision. Combining polymeric perfluorocarbon nanoemulsions with existent clinical focused ultrasound systems could in principle meet these needs, but it has not been clear whether these nanoparticles could provide the necessary drug loading, stability, and generalizability across a range of drugs, beyond a few niche applications. Here, we develop polymeric perfluorocarbon nanoemulsions into a generalized platform for ultrasound-targeted delivery of hydrophobic drugs with high potential for clinical translation. We demonstrate that a wide variety of drugs may be effectively uncaged with ultrasound using these nanoparticles, with drug loading increasing with hydrophobicity. We also set the stage for clinical translation by delineating production protocols that are scalable and yield sterile, stable, and optimized ultrasound-activated drug-loaded nanoemulsions. Finally, we exhibit a new potential application of these nanoemulsions for local control of vascular tone. This work establishes the power of polymeric perfluorocarbon nanoemulsions as a clinically-translatable platform for efficacious, noninvasive, and localized ultrasonic drug uncaging for myriad targets in the brain and body.


Subject(s)
Emulsions/chemistry , Fluorocarbons/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Drug Delivery Systems/methods
3.
Am J Physiol Heart Circ Physiol ; 306(7): H1011-7, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24531813

ABSTRACT

Removal of plasma proteins from perfusates increases vascular permeability. The common interpretation of the action of albumin is that it forms part of the permeability barrier by electrostatic binding to the endothelial glycocalyx. We tested the alternate hypothesis that removal of perfusate albumin in rat venular microvessels decreased the availability of sphingosine-1-phosphate (S1P), which is normally carried in plasma bound to albumin and lipoproteins and is required to maintain stable baseline endothelial barriers (Am J Physiol Heart Circ Physiol 303: H825-H834, 2012). Red blood cells (RBCs) are a primary source of S1P in the normal circulation. We compared apparent albumin permeability coefficients [solute permeability (Ps)] measured using perfusates containing albumin (10 mg/ml, control) and conditioned by 20-min exposure to rat RBCs with Ps when test perfusates were in RBC-conditioned protein-free Ringer solution. The control perfusate S1P concentration (439 ± 46 nM) was near the normal plasma value at 37 °C and established a stable baseline Ps (0.9 ± 0.4 × 10(-6) cm/s). Ringer solution perfusate contained 52 ± 8 nM S1P and increased Ps more than 10-fold (16.1 ± 3.9 × 10(-6) cm/s). Consistent with albumin-dependent transport of S1P from RBCs, S1P concentrations in RBC-conditioned solutions decreased as albumin concentration, hematocrit, and temperature decreased. Protein-free Ringer solution perfusates that used liposomes instead of RBCs as flow markers failed to maintain normal permeability, reproducing the "albumin effect" in these mammalian microvessels. We conclude that the albumin effect depends on the action of albumin to facilitate the release and transport of S1P from RBCs that normally provide a significant amount of S1P to the endothelium.


Subject(s)
Capillary Permeability , Erythrocytes/metabolism , Lysophospholipids/blood , Microcirculation , Perfusion , Serum Albumin/metabolism , Sphingosine/analogs & derivatives , Venules/physiology , Animals , Biological Transport , Hematocrit , Isotonic Solutions/metabolism , Liposomes , Male , Rats , Rats, Sprague-Dawley , Ringer's Solution , Sphingosine/blood , Time Factors
4.
J Drug Target ; 22(1): 48-56, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24079404

ABSTRACT

BACKGROUND: The vascular cell adhesion molecule-1 (VCAM-1) targeting peptide sequence, VHPKQHR, is a promising moiety for targeting atherosclerosis through incorporation into nanoparticles such as dendrimers and liposomes. PURPOSE: We aim to develop VCAM-1-targeted nanoparticles that effectively accumulate on the endothelium under shear conditions and to develop robust microfluidic chambers able to house sufficient cells for flow cytometric measurements. METHODS: Carboxyfluorescein-labeled monomeric VHP-peptide, tetrameric VHP-dendrimers (bisbidentate or radial architecture, with or without N-terminal acetylation) and VHP-peptide liposomes were prepared. Human umbilical vein endothelial cells were treated with nanoparticles under 0 or 2.9 dyne/cm(2) shear, and particle binding was quantified. Flow chambers cured at various temperatures, with or without glass backings were fabricated, characterized for deformation and applied in experiments. RESULTS: Although liposomes accumulated with highest efficiency, dendrimers also demonstrated specific binding. N-terminal acetylation significantly reduced dendrimer binding, and despite shorter movement range, bisbidentate dendrimers outperformed radial dendrimers, suggesting multiple epitope presence within its estimated arm-span of 57 Å. Under shear, while liposome binding increased 300%, dendrimer binding to cells decreased 65%. Through higher temperature curing and glass backing insertion, polydimethylsiloxane flow chambers maintaining rectangular cross-section with aspect-ratio as low as 1:111 were achieved. CONCLUSION: Optimized dendrimers and liposomal nanocarriers specifically accumulated onto cells within microfluidic chambers.


Subject(s)
Endothelium/metabolism , Nanoparticles/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Cells, Cultured , Dendrimers/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Liposomes/metabolism , Microfluidics/methods
5.
Am J Physiol Heart Circ Physiol ; 304(7): H954-65, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23376832

ABSTRACT

Exosomes, which are 50- to 100-nm-diameter lipid vesicles, have been implicated in intercellular communication, including transmitting malignancy, and as a way for viral particles to evade detection while spreading to new cells. Previously, we demonstrated that adult cardiac myocytes release heat shock protein (HSP)60 in exosomes. Extracellular HSP60, when not in exosomes, causes cardiac myocyte apoptosis via the activation of Toll-like receptor 4. Thus, release of HSP60 from exosomes would be damaging to the surrounding cardiac myocytes. We hypothesized that 1) pathological changes in the environment, such as fever, change in pH, or ethanol consumption, would increase exosome permeability; 2) different exosome inducers would result in different exosomal protein content; 3) ethanol at "physiological" concentrations would cause exosome release; and 4) ROS production is an underlying mechanism of increased exosome production. We found the following: first, exosomes retained their protein cargo under different physiological/pathological conditions, based on Western blot analyses. Second, mass spectrometry demonstrated that the protein content of cardiac exosomes differed significantly from other types of exosomes in the literature and contained cytosolic, sarcomeric, and mitochondrial proteins. Third, ethanol did not affect exosome stability but greatly increased the production of exosomes by cardiac myocytes. Fourth, ethanol- and hypoxia/reoxygenation-derived exosomes had different protein content. Finally, ROS inhibition reduced exosome production but did not completely inhibit it. In conclusion, exosomal protein content is influenced by the cell source and stimulus for exosome formation. ROS stimulate exosome production. The functions of exosomes remain to be fully elucidated.


Subject(s)
Chaperonin 60/analysis , Exosomes/chemistry , Myocytes, Cardiac/chemistry , Proteome/analysis , Animals , Ethanol/pharmacology , Exosomes/metabolism , Exosomes/ultrastructure , Hypoxia/metabolism , Male , Mitochondrial Proteins/analysis , Myocytes, Cardiac/pathology , Protein Stability , Proteome/drug effects , Proteomics , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/analysis , Reactive Oxygen Species/antagonists & inhibitors
6.
J Control Release ; 143(1): 13-22, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20006659

ABSTRACT

The design of delivery vehicles that are stable in circulation but can be activated by exogenous energy sources is challenging. Our goals are to validate new imaging methods for the assessment of particle stability, to engineer stable and activatable particles and to assess accumulation of a hydrophilic model drug in an orthotopic tumor. Here, liposomes were injected into the tail vein of FVB mice containing bilateral Met-1 tumors and imaged in vivo using microPET and optical imaging techniques. Cryo-electron microscopy was applied to assess particle shape prior to injection, ex vivo fluorescence images of dissected tissues were acquired, excised tissue was further processed with a cell-digest preparation and assayed for fluorescence. We find that for a stable particle, in vivo tumor images of a hydrophilic model drug were highly correlated with PET images of the particle shell and ex vivo fluorescence images of processed tissue, R(2)=0.95 and R(2)=0.99 respectively. We demonstrate that the accumulation of a hydrophilic model drug is increased by up to 177 fold by liposomal encapsulation, as compared to accumulation of the drug at 24 hours.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Fluorescent Dyes/pharmacokinetics , Lipids/pharmacokinetics , Mammary Neoplasms, Animal/diagnostic imaging , Mammary Neoplasms, Animal/metabolism , Positron-Emission Tomography , Spectrometry, Fluorescence , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Chemistry, Pharmaceutical , Cryoelectron Microscopy , Drug Compounding , Female , Fluoresceins/metabolism , Fluorescent Dyes/administration & dosage , Injections, Intravenous , Lipids/administration & dosage , Lipids/chemistry , Liposomes , Mice , Particle Size , Reproducibility of Results , Succinimides/pharmacokinetics , Surface Properties , Technology, Pharmaceutical/methods , Temperature
7.
Phys Med Biol ; 53(13): 3641-60, 2008 Jul 07.
Article in English | MEDLINE | ID: mdl-18562783

ABSTRACT

The development of transgenic reporter mice and advances in in vivo optical imaging have created unique opportunities to assess and analyze biological responses to thermal therapy directly in living tissues. Reporter mice incorporating the regulatory regions from the genes encoding the 70 kDa heat-shock proteins (Hsp70) and firefly luciferase (luc) as reporter genes can be used to non-invasively reveal gene activation in living tissues in response to thermal stress. High-intensity-focused ultrasound (HIFU) can deliver measured doses of acoustic energy to highly localized regions of tissue at intensities that are sufficient to stimulate Hsp70 expression. We report activation of Hsp70-luc expression using 1 s duration HIFU heating to stimulate gene expression in the skin of the transgenic reporter mouse. Hsp70 expression was tracked for 96 h following the application of 1.5 MHz continuous-wave ultrasound with spatial peak intensities ranging from 53 W cm(-2) up to 352 W cm(-2). The results indicated that peak Hsp70 expression is observed 6-48 h post-heating, with significant activity remaining at 96 h. Exposure durations were simulated using a finite-element model, and the predicted temperatures were found to be consistent with the observed Hsp70 expression patterns. Histological evaluation revealed that the thermal damage starts at the stratum corneum and extends deeper with increasing intensity. These results indicated that short-duration HIFU may be useful for inducing heat-shock expression, and that the period between treatments needs to be greater than 96 h due to the protective properties of Hsp70.


Subject(s)
Epidermis/radiation effects , Gene Expression Regulation/radiation effects , Genes, Reporter/genetics , HSP70 Heat-Shock Proteins/radiation effects , Hot Temperature , Luciferases/radiation effects , Ultrasonics , Animals , Epidermis/pathology , Gene Expression Regulation/genetics , HSP70 Heat-Shock Proteins/genetics , Luciferases/genetics , Mice , Mice, Transgenic , Time Factors , Transcriptional Activation
8.
Phys Med Biol ; 52(8): 2055-72, 2007 Apr 21.
Article in English | MEDLINE | ID: mdl-17404455

ABSTRACT

The goal of ultrasonic molecular imaging is the detection of targeted contrast agents bound to receptors on endothelial cells. We propose imaging methods that can distinguish adherent microbubbles from tissue and from freely circulating microbubbles, each of which would otherwise obscure signal from molecularly targeted adherent agents. The methods are based on a harmonic signal model of the returned echoes over a train of pulses. The first method utilizes an 'image-push-image' pulse sequence where adhesion of contrast agents is rapidly promoted by acoustic radiation force and the presence of adherent agents is detected by the signal change due to targeted microbubble adhesion. The second method rejects tissue echoes using a spectral high-pass filter. Free agent signal is suppressed by a pulse-to-pulse low-pass filter in both methods. An overlay of the adherent and/or flowing contrast agents on B-mode images can be readily created for anatomical reference. Contrast-to-tissue ratios from adherent microbubbles exceeding 30 dB and 20 dB were achieved for the two methods proposed, respectively. The performance of these algorithms is compared, emphasizing the significance and potential applications in ultrasonic molecular imaging.


Subject(s)
Contrast Media/chemistry , Drug Delivery Systems/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Ultrasonography/methods , Microbubbles , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Tissue Adhesions , Ultrasonography/instrumentation
9.
Article in English | MEDLINE | ID: mdl-11370354

ABSTRACT

Ultrasound contrast agents are encapsulated microbubbles, filled either with air or a higher weight molecular gas, ranging in size from 1 to 10 microns in diameter. The agents are modeled as air-filled spherical elastic shells of variable thickness and material properties. The scattered acoustic field is computed from a modal series solution, and reflectivity and angular scattering are then determined from the computed fields for agents of various properties. We show that contrast agents also support shell resonance responses in addition to the monopole response, which has been the focus of previous contrast agent studies. Lamb waves appear to be the source of these additional responses. A shell or curvature Lamb wave generates dipole peaks in the 1- to 40-MHz range for 2.5 to 3.5 microns radius agents with elastic properties approximating those of albumin protein. The inclusion of damping affects the lower frequency dipole peaks but is less important for responses occurring above approximately 30 MHz. Moreover, these responses hold untapped potential for clinical ultrasound applications such as tissue perfusion studies and high frequency contrast agent imaging.


Subject(s)
Ultrasonography , Biomedical Engineering , Blood Flow Velocity , Contrast Media , Gases , Humans , Microspheres , Models, Theoretical , Particle Size , Scattering, Radiation
10.
Article in English | MEDLINE | ID: mdl-11367791

ABSTRACT

Various applications of contrast-assisted ultrasound, including blood vessel detection, perfusion estimation, and drug delivery, require controlled destruction of contrast agent microbubbles. The lifetime of a bubble depends on properties of the bubble shell, the gas core, and the acoustic waveform impinging on the bubble. Three mechanisms of microbubble destruction are considered: fragmentation, acoustically driven diffusion, and static diffusion. Fragmentation is responsible for rapid destruction of contrast agents on a time scale of microseconds. The primary characteristics of fragmentation are a very large expansion and subsequent contraction, resulting in instability of the bubble. Optical studies using a novel pulsed-laser optical system show the expansion and contraction of ultrasound contrast agent microbubbles with the ratio of maximum diameter to minimum diameter greater than 10. Fragmentation is dependent on the transmission pressure, occurring in over 55% of bubbles insonified with a peak negative transmission pressure of 2.4 MPa and in less than 10% of bubbles insonified with a peak negative transmission pressure of 0.8 MPa. The echo received from a bubble decorrelates significantly within two pulses when the bubble is fragmented, creating an opportunity for rapid detection of bubbles via a decorrelation-based analysis. Preliminary findings with a mouse tumor model verify the occurrence of fragmentation in vivo. A much slower mechanism of bubble destruction is diffusion, which is driven by both a concentration gradient between the concentration of gas in the bubble compared with the concentration of gas in the liquid, as well as convective effects of motion of the gas-liquid interface. The rate of diffusion increases during insonation, because of acoustically driven diffusion, producing changes in diameter on the time scale of the acoustic pulse length, thus, on the order of microseconds. Gas bubbles diffuse while they are not being insonified, termed static diffusion. An air bubble with initial diameter of 2 microns in water at 37 degrees C is predicted to fully dissolve within 25 ms. Clinical ultrasound contrast agents are often designed with a high molecular weight core in an attempt to decrease the diffusion rate. C3F8 and C4F10 gas bubbles of the same size are predicted to fully dissolve within 400 ms and 4000 ms, respectively. Optical experiments involving gas diffusion of a contrast agent support the theoretical predictions; however, shelled agents diffuse at a much slower rate without insonation, on the order of minutes to hours. Shell properties play a significant role in the rate of static diffusion by blocking the gas-liquid interface and decreasing the transport of gas into the surrounding liquid. Static diffusion decreases the diameter of albumin-shelled agents to a greater extent than lipid-shelled agents after insonation.


Subject(s)
Blood Vessels/diagnostic imaging , Contrast Media/chemistry , Ultrasonography/methods , Animals , Contrast Media/administration & dosage , Humans , Male , Mice , Mice, Nude , Phospholipids/administration & dosage , Phospholipids/chemistry , Prostatic Neoplasms/blood supply , Prostatic Neoplasms/diagnostic imaging , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Biophys J ; 80(3): 1547-56, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11222315

ABSTRACT

Acoustically active microbubbles are used for contrast-enhanced ultrasound assessment of organ perfusion. In regions of inflammation, contrast agents are captured and phagocytosed by activated neutrophils adherent to the venular wall. Using direct optical observation with a high-speed camera and acoustical interrogation of individual bubbles and cells, we assessed the physical and acoustical responses of both phagocytosed and free microbubbles. Optical analysis of bubble radial oscillations during insonation demonstrated that phagocytosed microbubbles experience viscous damping within the cytoplasm and yet remain acoustically active and capable of large volumetric oscillations during an acoustic pulse. Fitting a modified version of the Rayleigh-Plesset equation that describes mechanical properties of thin shells to optical radius-time data of oscillating bubbles provided estimates of the apparent viscosity of the intracellular medium. Phagocytosed microbubbles experienced a viscous damping approximately sevenfold greater than free microbubbles. Acoustical comparison between free and phagocytosed microbubbles indicated that phagocytosed microbubbles produce an echo with a higher mean frequency than free microbubbles in response to a rarefaction-first single-cycle pulse. Moreover, this frequency increase is predicted using the modified Rayleigh-Plesset equation. We conclude that contrast-enhanced ultrasound can detect distinct acoustic signals from microbubbles inside of neutrophils and may provide a unique tool to identify activated neutrophils at sites of inflammation.


Subject(s)
Neutrophils/physiology , Phagocytosis , Contrast Media , Elasticity , Humans , In Vitro Techniques , Kinetics , Models, Biological , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/drug effects , Neutrophils/ultrastructure , Oscillometry , Phospholipids , Viscosity
13.
Article in English | MEDLINE | ID: mdl-18238696

ABSTRACT

Ultrasound contrast agents provide new opportunities to image vascular volume and flow rate directly. To accomplish this goal, new pulse sequences can be developed to detect specifically the presence of a microbubble or group of microbubbles. We consider a new scheme to detect the presence of contrast agents in the body by examining the effect of transmitted phase on the received echoes from single bubbles. In this study, three tools are uniquely combined to aid in the understanding of the effects of transmission parameters and bubble radius on the received echo. These tools allow for optical measurement of radial oscillations of single bubbles during insonation, acoustical study of echoes from single contrast agent bubbles, and the comparison of these experimental observations with theoretical predictions. A modified Herring equation with shell terms is solved for the time-dependent bubble radius and wall velocity, and these outputs are used to formulate the predicted echo from a single encapsulated bubble. The model is validated by direct comparison of the predicted radial oscillations with those measured optically. The transient bubble response is evaluated with a transducer excitation consisting of one-cycle pulses with a center frequency of 2.4-MHz. The experimental and theoretical results are in good agreement and predict that the transmission of two pulses with opposite polarity will yield similar time domain echoes with the first significant portion of the echo generated when the rarefactional half-cycle reaches the bubble.

14.
Invest Ophthalmol Vis Sci ; 40(7): 1373-81, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10359319

ABSTRACT

PURPOSE: To develop a noninvasive technique to visualize and measure blood flow in the iris and ciliary body. METHODS: Echo data from 50-MHz ultrasound scans of the iris and ciliary body of rabbits were digitized using a new "swept scan" modality. The method makes use of spatial oversampling to identify regions with scatterers whose range changes with time. The data allowed construction of high-resolution B-mode images with embedded flow information. Pulsatility over the cardiac cycle was evaluated by sending a series of pulses along a single line of sight containing a vessel of interest. Local blood flow and changes over the cardiac cycle before and after application of atropine were quantified. RESULTS: Flow was identified in the radial vessels and major arterial circle of the iris. Vessels with lumens as small as 40 microm in diameter and flow velocities as low as 0.6 mm/sec were measured. Change in blood velocity over the cardiac cycle was determined to be approximately 27%. Peak systolic velocity after administration of topical atropine increased by 72%. CONCLUSIONS: This technique allowed visualization of flow using the same type of very-high-frequency transducer now widely used for imaging the anterior segment. The technique can also be used at lower frequencies for more posterior tissues with similar improvement of resolution over Doppler. The ability to examine flow in the anterior segment of the eye offers a new tool for study of glaucoma, hypotony, tumors, and other disorders.


Subject(s)
Anterior Eye Segment/blood supply , Ciliary Body/blood supply , Iris/blood supply , Ophthalmic Artery/diagnostic imaging , Ultrasonography, Doppler, Color , Animals , Blood Flow Velocity , Heart Rate , Microcirculation , Pulsatile Flow , Rabbits
15.
Article in English | MEDLINE | ID: mdl-18238417

ABSTRACT

Optimal use of encapsulated microbubbles for ultrasound contrast agents and drug delivery requires an understanding of the complex set of phenomena that affect the contrast agent echo and persistence. With the use of a video microscopy system coupled to either an ultrasound flow phantom or a chamber for insonifying stationary bubbles, we show that ultrasound has significant effects on encapsulated microbubbles. In vitro studies show that a train of ultrasound pulses can alter the structure of an albumin-shelled bubble, initiate various mechanisms of bubble destruction or produce aggregation that changes the echo spectrum. In this analysis, changes observed optically are compared with those observed acoustically for both albumin and lipid-shelled agents. We show that, when insonified with a narrowband pulse at an acoustic pressure of several hundred kPa, a phospholipid-shelled bubble can undergo net radius fluctuations of at least 15%; and an albumin-shelled bubble initially demonstrates constrained expansion and contraction. If the albumin shell contains air, the shell may not initially experience surface tension; therefore, the echo changes more significantly with repeated pulsing. A set of observations of contrast agent destruction is presented, which includes the slow diffusion of gas through the shell and formation of a shell defect followed by rapid diffusion of gas into the surrounding liquid. These observations demonstrate that the low-solubility gas used in these agents can persist for several hundred milliseconds in solution. With the transmission of a high-pulse repetition rate and a low pressure, the echoes from, contrast agents can be affected by secondary radiation force. Secondary radiation force is an attractive force for these experimental conditions, creating aggregates with distinct echo characteristics and extended persistence. The scattered echo from an aggregate is several times stronger and more narrowband than echoes from individual bubbles.

16.
Invest Radiol ; 33(12): 863-70, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9851820

ABSTRACT

RATIONALE AND OBJECTIVES: Ultrasound can cause destruction of microbubble contrast agents used to enhance medical ultrasound imaging. This study sought to characterize the dynamics of this interaction by direct visual observation of microbubbles during insonification in vitro by a medical ultrasound imaging system. METHODS: Video microscopy was used to observe air-filled sonicated albumin microspheres adsorbed to a solid support during insonation. RESULTS: Deflation was not observed at lowest transmit power settings. At higher intensities, gas left the microparticle gradually, apparently dissolving into the surrounding medium. Deflation was slower for higher microsphere surface densities. Intermittent ultrasound imaging (0.5 Hz refresh rate) caused slower deflation than continuous imaging (33 Hz). CONCLUSIONS: Higher concentrations of microbubbles, lower ultrasound transmit power settings, and intermittent imaging each can reduce the rate of destruction of microspheres resulting from medical ultrasound insonation.


Subject(s)
Albumins/chemistry , Contrast Media/chemistry , Microscopy, Video/methods , Ultrasonography/methods , Adsorption , Humans , Linear Models , Microscopy, Video/instrumentation , Microscopy, Video/statistics & numerical data , Microspheres , Time Factors , Ultrasonography/instrumentation , Ultrasonography/statistics & numerical data
17.
Ultrasound Med Biol ; 24(6): 809-24, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9740383

ABSTRACT

The ultimate goal of this work was the development of a system capable of estimating the low flow velocities in the microvasculature. Estimation of low velocity flow within these vessels is challenging due to the small signal levels and the effect of cardiac and respiratory motion. Realignment of the signal from a single line-of-sight to remove physiological tissue motion is a critical part of the process of small-vessel flow mapping, and our methods for this alignment are considered in this paper. Each method involves the correlation of pulses acquired from the same line-of-sight. The first method involves the correlation of adjacent pulses (nearest-neighbor), the second involves a single reference line and the third involves averaging the correlation over a set of reference lines. We find that a nearest-neighbor strategy is suboptimal, and that strategies involving a global reference line are superior. A bound on the variance of estimates of the location of the correlation peak is presented. This bound allows us to consider our results in comparison with an absolute limit. Finally, a new algorithm allowing for alignment between lines-of-sight is described, and initial results are presented. Such an algorithm does, in fact, reduce jitter, correct for tissue motion and enables us to better visualize vessel continuity. We find that vessels as small as 40 microm can be mapped in two dimensions using a 50-MHz transducer.


Subject(s)
Blood Flow Velocity , Microcirculation/diagnostic imaging , Animals , Eye/blood supply , Humans , Image Processing, Computer-Assisted , Mice , Neoplasms, Experimental/blood supply , Phantoms, Imaging , Rabbits , Signal Processing, Computer-Assisted , Ultrasonography
18.
Article in English | MEDLINE | ID: mdl-18249990

ABSTRACT

In contrast to previous systems in which an ultrasonic pulse was repeatedly directed to a discrete line of sight, a new method has been developed to continuously scan over a region in order to rapidly assess blood velocities in superficial small blood vessels. Using this technique, which we call swept-scan, a high frequency transducer can rapidly translate across a region of interest, and sensitive maps of blood velocity in small blood vessels can be constructed. This system has been applied to flow mapping in the anterior segment of the eye, which is clinically significant in cases of trauma and glaucoma. No previous imaging technique has been capable of estimating blood velocities within this region in a clinically useful manner. With this new technique, each 2-D scan of the eye can be obtained in an interval on the order of 1 second, and blood flow through the iris and ciliary body can be detected in vessels as small as 40 microns. A major implication of this new technique is that a wall filter can be applied continuously to the return from all regions, thus eliminating the transient response that occurs along each line of sight in traditional Doppler systems.

19.
Article in English | MEDLINE | ID: mdl-18250001

ABSTRACT

Current harmonic imaging scanners transmit a narrowband signal that limits spatial resolution in order to differentiate the echoes from tissue from the echoes from microbubbles. Because spatial resolution is particularly important in applications, including mapping vessel density in tumors, we explore the use of wideband signals in contrast imaging. It is first demonstrated that microspheres can be destroyed using one or two pulses of ultrasound. Thus, temporal signal processing strategies that use the change in the echo over time can be used to differentiate echoes from bubbles and echoes from tissue. Echo parameters, including intensity and spectral shape for narrowband and wideband transmission, are then evaluated. Through these experiments, the echo intensity received from bubbles after wideband transmission is shown to be at least as large as that for narrowband transmission, and can be larger. In each case, the echo intensity increases in a nonlinear fashion in comparison with the transmitted signal intensity. Although the echo intensity at harmonic multiples of the transmitted wave center frequency can be larger for narrowband insonation, echoes received after wideband insonation demonstrate a broadband spectrum with significant amplitude over a very wide range of frequencies.

20.
Ultrasound Med Biol ; 23(7): 1047-57, 1997.
Article in English | MEDLINE | ID: mdl-9330448

ABSTRACT

A high-resolution study of breast tissue motion during cardiac systole and respiration is presented. An experimental system was designed to achieve a velocity resolution on the order of 1 mm/s with high spatial resolution. The peak velocity of tissue motion estimated during cardiac systole ranged from 0.2 mm/s to 5.6 mm/s among the subjects studied. It is shown that motion due to the cardiac cycle is less significant when the subject is positioned on the side rather than supine. The mean tissue velocity among subjects in the supine position is 2.88 mm/s and drops to 0.81 mm/s for the side position, with a corresponding spatial displacement of 0.095 mm, dropping to 0.027 mm. The velocity profiles indicate that 100 ms is required for the entire ribcage contraction-relaxation process to occur. Experiments using a prone biopsy table show the almost complete elimination of tissue motion due to cardiac systole, suggesting that the use of the table eliminates this motion, thus allowing for high-resolution blood velocity estimates. Features resulting from respiratory motion are also presented. We found this motion to be of a much longer time duration, and of a much higher magnitude, with velocities as high as 29 mm/s. The implications of the study on the high-resolution estimation of blood velocity and high-resolution breast imaging are discussed.


Subject(s)
Breast/physiology , Signal Processing, Computer-Assisted , Ultrasonography/methods , Algorithms , Female , Humans , Likelihood Functions , Male , Mathematics , Movement , Posture , Respiration/physiology , Ribs/physiology , Systole
SELECTION OF CITATIONS
SEARCH DETAIL
...