Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 52(20): 11922-11930, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30234975

ABSTRACT

Managing leaks in urban natural gas (NG) distribution systems is important for reducing methane emissions and costly waste. Mobile surveying technologies have emerged as a new tool for monitoring system integrity, but this new technology has not yet been widely adopted. Here, we establish the efficacy of mobile methane surveys for managing local NG distribution systems by evaluating their ability to detect and locate NG leaks and quantify their emissions. In two cities, three-quarters of leak indications from mobile surveys corresponded to NG leaks, but local distribution companies' field crews did not find most of these leaks, indicating that the national CH4 activity factor for leaks in local NG distribution pipelines is underestimated by a factor of 2.4. We found the median distance between mobile-estimated leak locations and actual leak locations was 19 m. A comparison of emission quantification methods (mobile-based, surface enclosure, and tracer ratio) found that the mobile method overestimated leak magnitude for the smallest leaks but accurately estimated size for the largest leaks that are responsible for the majority of total emissions. Across leak sizes, mobile methods adequately rank relative emission rates for repair prioritization, and they are easily deployed and offer efficient spatial coverage.


Subject(s)
Air Pollutants , Natural Gas , Cities , Methane , Surveys and Questionnaires , Uncertainty
2.
Environ Sci Technol ; 50(16): 8910-7, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27487422

ABSTRACT

This paper describes process-based estimation of CH4 emissions from sources in Indianapolis, IN and compares these with atmospheric inferences of whole city emissions. Emissions from the natural gas distribution system were estimated from measurements at metering and regulating stations and from pipeline leaks. Tracer methods and inverse plume modeling were used to estimate emissions from the major landfill and wastewater treatment plant. These direct source measurements informed the compilation of a methane emission inventory for the city equal to 29 Gg/yr (5% to 95% confidence limits, 15 to 54 Gg/yr). Emission estimates for the whole city based on an aircraft mass balance method and from inverse modeling of CH4 tower observations were 41 ± 12 Gg/yr and 81 ± 11 Gg/yr, respectively. Footprint modeling using 11 days of ethane/methane tower data indicated that landfills, wastewater treatment, wetlands, and other biological sources contribute 48% while natural gas usage and other fossil fuel sources contribute 52% of the city total. With the biogenic CH4 emissions omitted, the top-down estimates are 3.5-6.9 times the nonbiogenic city inventory. Mobile mapping of CH4 concentrations showed low level enhancement of CH4 throughout the city reflecting diffuse natural gas leakage and downstream usage as possible sources for the missing residual in the inventory.


Subject(s)
Air Pollutants , Methane , Indiana , Natural Gas , Waste Disposal Facilities
3.
J Air Waste Manag Assoc ; 65(7): 856-62, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26079559

ABSTRACT

UNLABELLED: Quantification of leaks from natural gas (NG) infrastructure is a key step in reducing emissions of the greenhouse gas methane (CH4), particularly as NG becomes a larger component of domestic energy supply. The U.S. Environmental Protection Agency (EPA) requires measurement and reporting of emissions of CH4 from NG transmission, storage, and processing facilities, and the high-flow sampler (or high-volume sampler) is one of the tools approved for this by the EPA. The Bacharach Hi-Flow Sampler (BHFS) is the only commercially available high-flow instrument, and it is also used throughout the NG supply chain for directed inspection and maintenance, emission factor development, and greenhouse gas reduction programs. Here we document failure of the BHFS to transition from a catalytic oxidation sensor used to measure low NG (~5% or less) concentrations to a thermal conductivity sensor for higher concentrations (from ~5% to 100%), resulting in underestimation of NG emission rates. Our analysis includes both our own field testing and analysis of data from two other studies (Modrak et al., 2012; City of Fort Worth, 2011). Although this failure is not completely understood, and although we do not know if all BHFS models are similarly affected, sensor transition failure has been observed under one or more of these conditions: (1) Calibration is more than ~2 weeks old; (2) firmware is out of date; or (3) the composition of the NG source is less than ~91% CH4. The extent to which this issue has affected recent emission studies is uncertain, but the analysis presented here suggests that the problem could be widespread. Furthermore, it is critical that this problem be resolved before the onset of regulations on CH4 emissions from the oil and gas industry, as the BHFS is a popular instrument for these measurements. IMPLICATIONS: An instrument commonly used to measure leaks in natural gas infrastructure has a critical sensor transition failure issue that results in underestimation of leaks, with implications for greenhouse gas emissions estimates as well as safety.


Subject(s)
Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Methane/chemistry , Natural Gas/analysis
4.
Environ Sci Technol ; 49(8): 5161-9, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25826444

ABSTRACT

Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.


Subject(s)
Environmental Monitoring/methods , Methane/analysis , Natural Gas , Air Pollutants/analysis , Natural Gas/analysis , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...