Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 14(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39057659

ABSTRACT

The escalating emissions of CO2 into the atmosphere require the urgent development of technologies aimed at mitigating environmental impacts. Among these, aqueous amine solutions and polymeric membranes, such as cellulose acetate and polyimide are commercial technologies requiring improvement or substitution to enhance the economic and energetic efficiency of CO2 separation processes. Ionic liquids and poly(ionic liquids) (PILs) are candidates to replace conventional CO2 separation technologies. PILs are a class of materials capable of combining the favorable gas affinity exhibited by ionic liquids (ILs) with the processability inherent in polymeric materials. In this context, the synthesis of the IL GLYMIM[Cl] was performed, followed by ion exchange processes to achieve GLYMIM variants with diverse counter anions (NTf2-, PF6-, and BF4). Subsequently, PIL membranes were fabricated from these tailored ILs and subjected to characterization, employing techniques such as SEC, FTIR, DSC, TGA, DMA, FEG-SEM, and CO2 sorption analysis using the pressure decay method. Furthermore, permeability and ideal selectivity assessments of CO2/CH4 mixture were performed to derive the diffusion and solubility coefficients for both CO2 and CH4. PIL membranes exhibited adequate thermal and mechanical properties. The PIL-BF4 demonstrated CO2 sorption capacities of 33.5 mg CO2/g at 1 bar and 104.8 mg CO2/g at 10 bar. Furthermore, the PIL-BF4 membrane exhibited permeability and ideal (CO2/CH4) selectivity values of 41 barrer and 44, respectively, surpassing those of a commercial cellulose acetate membrane as reported in the existing literature. This study underscores the potential of PIL-based membranes as promising candidates for enhanced CO2 capture technologies.

2.
Heliyon ; 5(7): e02183, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31388596

ABSTRACT

Physical immobilization of ionic liquids (ILs) in solid materials appears as an interesting strategy for the development of new sorbents for CO2 separation from natural gas. In this work the effect of physical immobilization of two ionic liquids with different anions (bmim[Cl] and bmim[OAc]) on two mesoporous supports (commercial silica SBA-15 and silica extracted from rice husk) was evaluated for CO2 separation from natural gas by experimental determination of CO2 sorption, CO2/CH4 selectivity and sorption kinetics. Results showed that the pure supports present the greatest CO2 sorption capacity when compared to immobilized ILs. However, CO2 removal efficiency improves considerably in the CO2/CH4 mixture when ILs are immobilized in these supports. The best selectivity results were obtained for supports immobilized with the IL bmim[Cl] and values increased for SIL-Cl by 37% and SBA-Cl 51% when compared with their respective supports. The contribution of SIL-Cl (3.03 ± 0.12) to separation performance (CO2/CH4) is similar to SBA-Cl (3.29 ± 0.39). ILs supported also presented fast sorption kinetics when compared to pure ILs thus being an interesting alternative in the search for highly efficient and low-cost separation processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...