Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Antibiotics (Basel) ; 12(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37627729

ABSTRACT

Salmonella Isangi is an infrequent serovar that has recently been reported in several countries due to nosocomial infections. A considerable number of reports indicate Salmonella Isangi multidrug resistance, especially to cephalosporins, which could potentially pose a risk to public health worldwide. Genomic analysis is an excellent tool for monitoring the emergence of microorganisms and related factors. In this context, the aim of this study was to carry out a genomic analysis of Salmonella Isangi isolated from poultry in Brazil, and to compare it with the available genomes from the Pathogen Detection database and Sequence Read Archive. A total of 142 genomes isolated from 11 different countries were investigated. A broad distribution of extended-spectrum beta-lactamase (ESBL) genes was identified in the Salmonella Isangi genomes examined (blaCTX-M-15, blaCTX-M-2, blaDHA-1, blaNDM-1, blaOXA-10, blaOXA-1, blaOXA-48, blaSCO-1, blaSHV-5, blaTEM-131, blaTEM-1B), primarily in South Africa. Resistome analysis revealed predicted resistance to aminoglycoside, sulfonamide, macrolide, tetracycline, trimethoprim, phenicol, chloramphenicol, and quaternary ammonium. Additionally, PMQR (plasmid-mediated quinolone resistance) genes qnr19, qnrB1, and qnrS1 were identified, along with point mutations in the genes gyrAD87N, gyrAS83F, and gyrBS464F, which confer resistance to ciprofloxacin and nalidixic acid. With regard to plasmids, we identified 17 different incompatibility groups, including IncC, Col(pHAD28), IncHI2, IncHI2A, IncM2, ColpVC, Col(Ye4449), Col156, IncR, IncI1(Alpha), IncFIB (pTU3), Col(B5512), IncQ1, IncL, IncN, IncFIB(pHCM2), and IncFIB (pN55391). Phylogenetic analysis revealed five clusters grouped by sequence type and antimicrobial gene distribution. The study highlights the need for monitoring rare serovars that may become emergent due to multidrug resistance.

2.
Pathogens ; 13(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38251331

ABSTRACT

This study aimed to investigate the genomic and epidemiological features of a methicillin-resistant Staphylococcus aureus sequence type 1 (MRSA ST1) strain associated with caprine subclinical mastitis. An S. aureus strain was isolated from goat's milk with subclinical mastitis in Paraiba, Northeastern Brazil, by means of aseptic procedures and tested for antimicrobial susceptibility using the disk-diffusion method. Whole genome sequencing was performed using the Illumina MiSeq platform. After genome assembly and annotation, in silico analyses, including multilocus sequence typing (MLST), antimicrobial resistance and stress-response genes, virulence factors, and plasmids detection were performed. A comparative SNP-based phylogenetic analysis was performed using publicly available MRSA genomes. The strain showed phenotypic resistance to cefoxitin, penicillin, and tetracycline and was identified as sequence type 1 (ST1) and spa type 128 (t128). It harbored the SCCmec type IVa (2B), as well as the lukF-PV and lukS-PV genes. The strain was phylogenetically related to six community-acquired MRSA isolates (CA-MRSA) strains associated with human clinical disease in North America, Europe, and Australia. This is the first report of a CA-MRSA strain associated with milk in the Americas. The structural and epidemiologic features reported in the MRSA ST1 carrying a mecA-SCCmec type IVa suggest highly complex mechanisms of horizontal gene transfer in MRSA. The SNP-based phylogenetic analysis suggests a zooanthroponotic transmission, i.e., a strain of human origin.

3.
Food Microbiol ; 108: 104112, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36088119

ABSTRACT

Salmonella spp. remains one of the main pathogens causing diarrhea in humans worldwide. Lately, Salmonella Infantis has become endemic in several European, American, and Asian countries, presenting a multi-drug resistance profile and increased virulence. Various studies have attributed the high endemicity of Salmonella Infantis to pESI (plasmid to Emergent Salmonella Infantis). The ease of Salmonella to acquire pESI is of concern to health authorities and the food production chain. We searched for the presence of pESI in Salmonella genomes from the NCBI to understand the distribution of pESI worldwide and predict the main serovars and sequence types associated with the plasmid. We identified the pESI backbone, virulence, and resistance genes among Salmonella spp. isolated from 45 countries on five continents. We found the pESI-like structure in four different serovars: S. Muenchen, S. Schwarzengrund, S. Agona and S. Senftenberg. The pESI markers were also identified in 24 different sequence types. Most of the analyzed genomes were isolated from poultry, especially broiler and chicken. These results confirm the high dissemination of pESI-like megaplasmid among Salmonella Infantis worldwide and its ability to infect different serovars, as well as placing poultry production as the most favorable environment for pESI dissemination. Therefore, further studies are needed to prevent the spread of pESI to humans and the food chain.


Subject(s)
Salmonella Infections, Animal , Salmonella enterica , Animals , Chickens , Genomics , Humans , Poultry , Salmonella/genetics , Salmonella Infections, Animal/epidemiology , Salmonella enterica/genetics , Serogroup
4.
Foods ; 11(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35885387

ABSTRACT

The aim of the present study was to evaluate the sensory acceptability limit of refrigerated fish through a multivariate approach, involving classic physicochemical and bacteriological indicators and considering different consumer profiles. The results of the survival analysis demonstrated that, in general, consumers still considered the fish to be suitable for purchase (4.128 days of storage), despite being microbiologically unsuitable for consumption. However, the subsequent division of consumers into clusters indicated that women and individuals with high income and education levels tend to reject fish with few days of storage (3.650 days), mainly due to discoloration, despite still being microbiologically suitable for consumption. Thus, these segments present a safer behavior regarding the purchase of fresh fish. The influence of different frequencies of fish consumption and age of consumers on the assessment of fish freshness was not clarified. The responsibility for ensuring safe and healthy products at the point of sale must lie with the producers and distributors. However, improving consumers' ability to make good choices when buying fresh fish would bring social and economic benefits related to public health and to the seafood industry, because it would enable them to make relevant claims and demand their rights.

6.
Gene ; 787: 145646, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33848574

ABSTRACT

Salmonella spp. is one of the major agents of foodborne disease worldwide, and its virulence genes are responsible for the main pathogenic mechanisms of this micro-organism. The whole-genome sequencing (WGS) of pathogens has become a lower-cost and more accessible genotyping tool providing many gene analysis possibilities. This study provided an in silico investigation of 129 virulence genes, including plasmidial and bacteriophage genes from Brazilian strains' public Salmonella genomes. The frequency analysis of the four most sequenced serovars and a temporal analysis over the past four decades was also performed. The NCBI sequence reads archive (SRA) database comprised 1077 Salmonella public whole-genome sequences of strains isolated in Brazil between 1968 and 2018. Among the 1077 genomes, 775 passed in Salmonella in silico Typing (SISTR) quality control, which also identified 41 different serovars in which the four most prevalent were S. Enteritidis, S. Typhimurium, S. Dublin, and S. Heidelberg. Among these, S. Heidelberg presented the most distinct virulence profile, besides presenting Yersinia High Pathogenicity Island (HPI), rare and first reported in Salmonella from Brazil. The genes mgtC, csgC, ssaI and ssaS were the most prevalent within the 775 genomes with more than 99% prevalence. On the other hand, the less frequent genes were astA, iucBCD, tptC and shdA, with less than 1% frequency. All of the plasmids and bacteriophages virulence genes presented a decreasing trend between the 2000 s and 2010 s decades, except for the phage gene grvA, which increased in this period. This study provides insights into Salmonella virulence genes distribution in Brazil using freely available bioinformatics tools. This approach could guide in vivo and in vitro studies besides being an interesting method for the investigation and surveillance of Salmonella virulence. Moreover, here we propose the genes mgtC, csgC, ssaI and ssaS as additional targets for PCR identification of Salmonella in Brazil due to their very high frequency in the studied genomes.


Subject(s)
Genes, Bacterial , Genomic Islands , Salmonella/pathogenicity , Brazil , Computer Simulation , Genome, Bacterial , Salmonella/classification , Salmonella/genetics , Serotyping , Virulence/genetics , Whole Genome Sequencing , Yersinia/genetics
8.
Acta Trop ; 211: 105608, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32615081

ABSTRACT

Congenital toxoplasmosis is a zoonosis caused by the intracellular Apicomplexa protozoan Toxoplasma gondii. This infection causes subclinical or clinical lesions, such as retinochoroiditis and central nervous system lesions. The severity of fetal infection is related to the stage of pregnancy and the efficacy of the gestational treatment on fetal infection, whether it is achieved, or if it starts early. South America is the region with the highest burden of congenital toxoplasmosis and the most pathogenic genotypes. Here, we present the results of a comprehensive systematic review and meta-analysis of the congenital toxoplasmosis in Brazil. PubMed, Web of Science, and CAPES databases were used to search for relevant studies that were published between 1 January 2007 and 31 December 2018. The final searching process yielded 21 papers. The studies accounted for 469 children with congenital toxoplasmosis. Of these, 269 (57%) had a diagnosis in the postnatal period. Concerning mothers, 209 (44.6%) underwent prenatal care, but 47 (22.5%) did not receive any drug for toxoplasmosis treatment. There were 226 (48.2%) children with retinochoroiditis; 83 (17.7%) with brain calcifications; 9 (1.9%) with neurosensory auditory dysfunction; and 2 (0.42%) with human immunodeficiency virus coinfection. A total of 460 (98%) children had a medical and multidisciplinary follow-up for at least one year and the most frequent genotype was #11(BRII), found in seven children. There was a statistical correlation between the mother's treatment and asymptomatic children. The gestational treatment seems to protects the fetus since children of mothers who received anti-T. gondii medications have a better prognosis. The retinochoroiditis was the main finding among children, followed by brain calcifications.


Subject(s)
Antibodies, Protozoan/blood , Genotype , Pregnancy Complications, Infectious/epidemiology , Pregnant Women , Toxoplasma/genetics , Toxoplasma/parasitology , Toxoplasmosis, Congenital/epidemiology , Adult , Brazil/epidemiology , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Pregnancy , Risk Factors
9.
Genes Genomics ; 42(5): 495-506, 2020 05.
Article in English | MEDLINE | ID: mdl-32112371

ABSTRACT

BACKGROUND: Type Three Secretion Systems (T3SS) are nanomachine complexes, which display the ability to inject effector proteins directly into host cells. This skill allows for gram-negative bacteria to modulate several host cell responses, such as cytoskeleton rearrangement, signal transduction, and cytokine production, which in turn increase the pathogenicity of these bacteria. The Salmonella enterica subsp. enterica serovar Typhimurium (ST) T3SS has been the most characterized so far. Among gram-negative bacterium, ST is one of enterica groups predicted to have two T3SSs activated during different phases of infection. OBJECTIVE: To comprise current information about ST T3SS structure and function as well as an overview of its assembly and hierarchical regulation. METHODS: With a brief and straightforward reading, this review summarized aspects of both ST T3SS, such as its structure and function. That was possible due to the development of novel techniques, such as X-ray crystallography, cryoelectron microscopy, and nano-gold labelling, which also elucidated the mechanisms behind T3SS assembly and regulation, which was addressed in this review. CONCLUSION: This paper provided fundamental overview of ST T3SS assembly and regulation, besides summarized the structure and function of this complex. Due to T3SS relevance in ST pathogenicity, this complex could become a potential target in therapeutic studies as this nanomachine modulates the infection process.


Subject(s)
Salmonella typhimurium/metabolism , Type III Secretion Systems/metabolism , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/ultrastructure , Type III Secretion Systems/chemistry
10.
Appl Environ Microbiol ; 85(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31053586

ABSTRACT

Salmonella spp. are among the most important foodborne pathogens and the third leading cause of human death among diarrheal diseases worldwide. Animals are the primary source of this pathogen, and animal-based foods are the main transmission route to humans. Thus, understanding the global epidemiology of Salmonella serovars is key to controlling and monitoring this bacterium. In this context, this study aimed to evaluate the prevalence and diversity of Salmonella enterica serovars in animal-based foods (beef, pork, poultry, and seafood) throughout the five continents (Africa, the Americas [North and Latin America], Asia, Europe, and Oceania). The meta-analysis consisted of a chemometric assessment (hierarchical cluster analysis and principal component analysis) to identify the main epidemiological findings, including the prevalence and diversity of the Salmonella serovars in each matrix. Regarding the serovar distribution, S Typhimurium presented a cosmopolitan distribution, reported in all four assessed matrices and continents; poultry continues to play a central role in the dissemination of the Enteritidis serovar to humans, and Anatum and Weltevreden were the most frequently found in beef and seafood, respectively. Additionally, we recommended careful monitoring of certain serovars, such as Derby, Agona, Infantis, and Kentucky. Finally, given the scientific data regarding the most frequently reported serovars and which matrices constitute the main vehicles for the transmission of this pathogen, control programs may be improved, and specific interventions may be implemented in an attempt to reduce the risk of this pathogen reaching humans.IMPORTANCE Salmonellosis is caused by Salmonella spp. and is the third leading cause of death among food-transmitted diseases. This pathogen is commonly disseminated in domestic and wild animals, and the infection's symptoms are characterized by acute fever, nausea, abdominal pain, and diarrhea. The animals are the primary source of salmonellae, and animal-based foods are the main transmission route to humans. Therefore, data collected from these sources could contribute to future global interventions for effective control and surveillance of Salmonella along the food chain. In light of this, the importance of our research is in identifying the prevalence of Salmonella serovars in four animal-based food matrices (pork, poultry, beef, and seafood) and to evaluate the importance that each matrix has as the primary source of this pathogen to humans.


Subject(s)
Food Microbiology , Salmonella Infections, Animal/epidemiology , Salmonella enterica/physiology , Animals , Prevalence , Salmonella Infections, Animal/microbiology , Salmonella enterica/genetics , Serogroup
11.
Curr Microbiol ; 76(6): 762-773, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29785632

ABSTRACT

Currently, Salmonella enterica Typhimurium (ST) is responsible for most cases of food poisoning in several countries. It is characterized as a non-specific zoonotic bacterium that can infect both humans and animals and although most of the infections caused by this microorganism cause only a self-limiting gastroenteritis, some ST strains have been shown to be invasive, crossing the intestinal wall and reaching the systemic circulation. This unusual pathogenicity ability is closely related to ST virulence factors. This review aims to portray the main virulence factors in Salmonella Typhimurium, in order to better understand the strategies that this pathogen uses to reach the systemic circulation and increase its infectivity in humans and animals. Thus, the most studied Salmonella pathogenicity islands in Salmonella Typhimurium were detailed as to the functions of their encoded virulence factors. In addition, available knowledge on virulence plasmid was also compiled, as well as the chromosome regions involved in the virulence of this bacterium.


Subject(s)
Bacteremia/microbiology , Bacteremia/veterinary , Salmonella Infections, Animal/pathology , Salmonella Infections/pathology , Salmonella typhimurium/pathogenicity , Virulence Factors/metabolism , Animals , Genes, Bacterial , Genomic Islands , Humans , Salmonella Infections/microbiology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/genetics , Virulence , Virulence Factors/genetics
12.
Front Microbiol ; 8: 2587, 2017.
Article in English | MEDLINE | ID: mdl-29312260

ABSTRACT

Salmonellosis is one of the most common causes of foodborne infection and a leading cause of human gastroenteritis. Throughout the last decade, Salmonella enterica serotype Typhimurium (ST) has shown an increase report with the simultaneous emergence of multidrug-resistant isolates, as phage type DT104. Therefore, to successfully control this microorganism, it is important to attribute salmonellosis to the exact source. Studies of Salmonella source attribution have been performed to determine the main food/food-production animals involved, toward which, control efforts should be correctly directed. Hence, the election of a ST subtyping method depends on the particular problem that efforts must be directed, the resources and the data available. Generally, before choosing a molecular subtyping, phenotyping approaches such as serotyping, phage typing, and antimicrobial resistance profiling are implemented as a screening of an investigation, and the results are computed using frequency-matching models (i.e., Dutch, Hald and Asymmetric Island models). Actually, due to the advancement of molecular tools as PFGE, MLVA, MLST, CRISPR, and WGS more precise results have been obtained, but even with these technologies, there are still gaps to be elucidated. To address this issue, an important question needs to be answered: what are the currently suitable subtyping methods to source attribute ST. This review presents the most frequently applied subtyping methods used to characterize ST, analyses the major available microbial subtyping attribution models and ponders the use of conventional phenotyping methods, as well as, the most applied genotypic tools in the context of their potential applicability to investigates ST source tracking.

13.
Braz. j. microbiol ; 41(2): 497-500, Apr.-June 2010. ilus
Article in English | LILACS | ID: lil-545360

ABSTRACT

The antimicrobial susceptibility of 212 Salmonella strains isolated from patients and foods was evaluated and 45 percent were found to be resistant to nalidixic acid. Nalidixic acid resistant strains showed a higher minimal inhibitory concentration for ciprofloxacin than sensitive strains. During the study an increase of strains with reduced susceptibility to ciprofloxacin was also observed.


Subject(s)
Humans , Nalidixic Acid/analysis , Nalidixic Acid/isolation & purification , Ciprofloxacin/analysis , Disease Susceptibility , Drug Resistance, Microbial , Fluoroquinolones , Quinolones , Salmonella Infections , Salmonella/growth & development , Salmonella/isolation & purification , Food Samples , Microbial Sensitivity Tests , Patients , Methods
14.
Braz J Microbiol ; 41(2): 497-500, 2010 Apr.
Article in English | MEDLINE | ID: mdl-24031522

ABSTRACT

The antimicrobial susceptibility of 212 Salmonella strains isolated from patients and foods was evaluated and 45% were found to be resistant to nalidixic acid. Nalidixic acid resistant strains showed a higher minimal inhibitory concentration for ciprofloxacin than sensitive strains. During the study an increase of strains with reduced susceptibility to ciprofloxacin was also observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...