Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Big Data ; 5: 910030, 2022.
Article in English | MEDLINE | ID: mdl-35754557

ABSTRACT

Many video-on-demand and music streaming services provide the user with a page consisting of several recommendation lists, i.e., widgets or swipeable carousels, each built with specific criteria (e.g., most recent, TV series, etc.). Finding efficient strategies to select which carousels to display is an active research topic of great industrial interest. In this setting, the overall quality of the recommendations of a new algorithm cannot be assessed by measuring solely its individual recommendation quality. Rather, it should be evaluated in a context where other recommendation lists are already available, to account for how they complement each other. The traditional offline evaluation protocol however does not take this into account. To address this limitation, we propose an offline evaluation protocol for a carousel setting in which the recommendation quality of a model is measured by how much it improves upon that of an already available set of carousels. We also propose to extend ranking metrics to the two-dimensional carousel setting in order to account for a known position bias, i.e., users will not explore the lists sequentially, but rather concentrate on the top-left corner of the screen. Finally, we describe and evaluate two strategies for the ranking of carousels in a scenario where the technique used to generate the two-dimensional layout is agnostic on the algorithms used to generate each carousel. We report experiments on publicly available datasets in the movie domain to show how the relative effectiveness of several recommendation models compares. Our results indicate that under a carousel setting the ranking of the algorithms changes sometimes significantly. Furthermore, when selecting the optimal carousel layout accounting for the two dimensional layout of the user interface leads to very different selections.

2.
Sci Rep ; 12(1): 6539, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35449435

ABSTRACT

Job Shop Scheduling is a combinatorial optimization problem of particular importance for production environments where the goal is to complete a production task in the shortest possible time given limitations in the resources available. Due to its computational complexity it quickly becomes intractable for problems of interesting size. The emerging technology of Quantum Annealing provides an alternative computational architecture that promises improved scalability and solution quality. However, several limitations as well as open research questions exist in this relatively new and rapidly developing technology. This paper studies the application of quantum annealing to solve the job shop scheduling problem, describing each step required from the problem formulation to the fine-tuning of the quantum annealer and compares the solution quality with various classical solvers. Particular attention is devoted to aspects that are often overlooked, such as the computational cost of representing the problem in the formulation required by the quantum annealer, the relative qubits requirements and how to mitigate chain breaks. Furthermore, the impact of advanced tools such as reverse annealing is presented and its effectiveness discussed. The results indicate several challenges emerging at various stages of the experimental pipeline which bring forward important research questions and directions of improvement.

3.
Entropy (Basel) ; 23(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34441110

ABSTRACT

The promise of quantum computing to open new unexplored possibilities in several scientific fields has been long discussed, but until recently the lack of a functional quantum computer has confined this discussion mostly to theoretical algorithmic papers. It was only in the last few years that small but functional quantum computers have become available to the broader research community. One paradigm in particular, quantum annealing, can be used to sample optimal solutions for a number of NP-hard optimization problems represented with classical operations research tools, providing an easy access to the potential of this emerging technology. One of the tasks that most naturally fits in this mathematical formulation is feature selection. In this paper, we investigate how to design a hybrid feature selection algorithm for recommender systems that leverages the domain knowledge and behavior hidden in the user interactions data. We represent the feature selection as an optimization problem and solve it on a real quantum computer, provided by D-Wave. The results indicate that the proposed approach is effective in selecting a limited set of important features and that quantum computers are becoming powerful enough to enter the wider realm of applied science.

SELECTION OF CITATIONS
SEARCH DETAIL
...